Skip to main content

End-to-End Generative Adversarial Network for Palm-Vein Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2020)

Abstract

Palm-vein recognition has received increasing researchers’ attention in recent years. However, palm-vein recognition faces various challenges in practical applications, one of which is the lack of robustness against image quality degradation, resulting in reduction of the verification accuracy. To address this problem, this paper proposes an end-to-end convolutional neural network to automatically extract vein network features, thus without resorting to any hand-crafted features. Firstly, we label the palm-vein pixels based on several handcraft-based segmentation methods and reconstruct a training set accordingly. Secondly, an end-to-end vein segmentation model is proposed based on a generative adversarial network. After training, this model outputs a map where each value is the probability that the corresponding pixel belongs to a vein pattern. The resulting map is then subject to binarization by thresholding and stored in a binary image, used subsequently for verification matching. The experimental results on the public CASIA palm-vein dataset demonstrate the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, A.K., Feng, J.J.: Latent fingerprint matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 88–100 (2010)

    Google Scholar 

  2. Al-Waisy, A.S., Qahwaji, R., Ipson, S., Al-Fahdawi, S., Nagem, T.A.M.: A multi-biometric iris recognition system based on a deep learning approach. Pattern Anal. Appl. 21(3), 783–802 (2017). https://doi.org/10.1007/s10044-017-0656-1

    Article  MathSciNet  Google Scholar 

  3. Zou, Q., Ni, L., Wang, Q., Li, Q., Wang, S.: Robust gait recognition by integrating inertial and RGBD sensors. IEEE Trans. Cybern. 48(4), 1136–1150 (2017)

    Google Scholar 

  4. Ding, C.X., Tao, D.C.: Trunk-branch ensemble convolutional neural networks for video-based face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 1002–1014 (2017)

    Google Scholar 

  5. Boukhayma, A., Bem, R.D., Torr, P.H.: 3D hand shape and pose from images in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10843–10852. IEEE Computer Society, Los Alamitos (2019)

    Google Scholar 

  6. Diaz, M., Fischer, A., Ferrer, M.A., Plamondon, R.: Dynamic signature verification system based on one real signature. IEEE Trans. Cybern. 48(1), 228–239 (2016)

    Google Scholar 

  7. Kumar, A., Zhou, Y.: Human identification using finger images. IEEE Trans. Image Process. 21(4), 2228–2244 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Zhou, Y., Kumar, A.: Human identification using palm-vein images. IEEE Trans. Inf. Forensics Secur. 6(4), 1259–1274 (2011)

    Google Scholar 

  9. Kumar, A., Prathyusha, K.V.: Personal authentication using hand vein triangulation and knuckle shape. IEEE Trans. Image Process. 18(9), 2127–2136 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Ruiz-Albacete, V., Tome-Gonzalez, P., Alonso-Fernandez, F., Galbally, J., Fierrez, J., Ortega-Garcia, J.: Direct attacks using fake images in iris verification. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BioID 2008. LNCS, vol. 5372, pp. 181–190. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89991-4_19

    Chapter  Google Scholar 

  11. Menotti, D., Chiachia, G., Pinto, A., et al.: Deep representations for iris, face, and fingerprint spoofing detection. IEEE Trans. Inf. Forensics Secur. 10(4), 864–879 (2015)

    Google Scholar 

  12. Tanaka, T., Kubo, N.: Biometric authentication by hand vein patterns. In: Sice 2004 Conference, pp. 249–253. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  13. Shahin, M., Badawi, A., Kamel, M.: Biometric authentication using fast correlation of near infrared hand vein patterns. Int. J. Biomed. Sci. 2(1), 141–148 (2007)

    Google Scholar 

  14. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circ. Syst. Video Technol. 14(1), 4–20 (2004)

    Google Scholar 

  15. Miura, N., Nagasaka, A., Miyatake, T.: Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Mach. Vis. Appl. 15(4), 194–203 (2004)

    Google Scholar 

  16. Qin, H., Qin, L., Yu, C.: Region growth–based feature extraction method for finger-vein recognition. Opt. Eng. 50(5), 057208 (2011)

    Google Scholar 

  17. Qin, H., He, X., Yao, X., Li, H.: Finger-vein verification based on the curvature in radon space. Exp. Syst. Appl. 82, 151–161 (2017)

    Google Scholar 

  18. Yang, L., Yang, G., Yin, Y., Xi, X.: Finger vein recognition with anatomy structure analysis. IEEE Trans. Circ. Syst. Video Technol. 28, 1892–1905 (2017)

    Google Scholar 

  19. Qin, H., Qin, L., Xue, L., He, X., Yu, C., Liang, X.: Finger-vein verification based on multifeatures fusion. Sensors 13(11), 15048–15067 (2013)

    Google Scholar 

  20. Miura, N., Nagasaka, A., Miyatake, T.: Extraction of finger-vein patterns using maximum curvature points in image profiles. IEICE-Trans. Inf. Syst. 90(8), 1185–1194 (2007)

    Google Scholar 

  21. Yu C, B., Qin, H, F., Cui, Y, Z., Hu, X, Q.: Finger-vein image recognition combining modified hausdorff distance with minutiae feature matching. Interdisc. Sci. Comput. Life Sci. 1(4), 280–289 (2009)

    Google Scholar 

  22. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8(3), 263–269 (1989)

    Google Scholar 

  23. Huang, B., Dai, Y., Li, R., Tang, D., Li, W.: Finger-vein authentication based on wide line detector and pattern normalization. In: International Conference on Pattern Recognition, pp. 1269–1272. IEEE Computer Society, Los Alamitos (2010)

    Google Scholar 

  24. Zhang, Z., Ma, S., Han, X.: “Multiscale feature extraction of finger-vein patterns based on curvelets and local interconnection structure neural network. In: International Conference on Pattern Recognition, pp. 145–148. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  25. Qin, H., El-Yacoubi, M, A.: Deep representation-based feature extraction and recovering for finger-vein verification. IEEE Trans. Inf. Forensics Secur. 12(8), 1816–1829 (2017)

    Google Scholar 

  26. Qin, H., El-Yacoubi, M.A., Lin, J., et al.: An iterative deep neural network for hand-vein verification. IEEE Access 7, 34823–34837 (2019)

    Google Scholar 

  27. Yang, W., Hui, C., Chen, Z., et al.: FV-GAN: finger vein representation using generative adversarial networks. IEEE Trans. Inf. Forensics Secur. 14(9), 2512–2524 (2019)

    Google Scholar 

  28. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, David P., Chen, Danny Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.Louis, Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

  29. Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P, A.: Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss (2018). arXiv preprint arXiv:1804.10916

  30. Goodfellow, I., et al.: Generative adversarial nets. In Advances in Neural Information Processing Systems, pp. 2672–2680. Curran Associates, New York (2014)

    Google Scholar 

  31. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by Institut Mines Telecom/Telecom SudParis, the National Natural Science Foundation of China (Grant No. 61976030, 61402063), the Natural Science Foundation Project of Chongqing (Grant No. cstc2017jcyjAX0002, Grant No. cstc2018jcyjAX0095, Grant No. cstc2017zdcy-zdyfX0067), and the Natural Science Foundation of Chongqing Municipal Education Commission (KJQN201900848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qin, H., El Yacoubi, M.A. (2020). End-to-End Generative Adversarial Network for Palm-Vein Recognition. In: Lu, Y., Vincent, N., Yuen, P.C., Zheng, WS., Cheriet, F., Suen, C.Y. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2020. Lecture Notes in Computer Science(), vol 12068. Springer, Cham. https://doi.org/10.1007/978-3-030-59830-3_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59830-3_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59829-7

  • Online ISBN: 978-3-030-59830-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics