Skip to main content

GOPHER, an HPC Framework for Large Scale Graph Exploration and Inference

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2020)

Abstract

Biological ontologies, such as the Human Phenotype Ontology (HPO) and the Gene Ontology (GO), are extensively used in biomedical research to investigate the complex relationship that exists between the phenome and the genome. The interpretation of the encoded information requires methods that efficiently interoperate between multiple ontologies providing molecular details of disease-related features. To this aim, we present GenOtype PHenotype ExplOrer (GOPHER), a framework to infer associations between HPO and GO terms harnessing machine learning and large-scale parallelism and scalability in High-Performance Computing. The method enables to map genotypic features to phenotypic features thus providing a valid tool for bridging functional and pathological annotations. GOPHER can improve the interpretation of molecular processes involved in pathological conditions, displaying a vast range of applications in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Vectors are parallel-friendly structures that allow to easily split the elements among different compute elements.

  2. 2.

    Path frequencies for connected pairs are computed without considering the edges that directly connect the phenotype and genotype to the same gene, to avoid biasing the model towards already existing pairs.

References

  1. What exactly are genomes: genotypes and phenotypes? And what about phenomes? J. Theor. Biol. 186(1), 55–63 (1997)

    Article  Google Scholar 

  2. Garcia, M., Labarta, J., Corbalan, J.: Hints to improve automatic load balancing with LeWI for hybrid applications. J. Parallel Distrib. Comput. 74(9), 2781–2794 (2014)

    Article  Google Scholar 

  3. Embracing complex associations in common traits: Critical considerations for precision medicine. Trends Genet. 32(8), 470–484 (2016)

    Article  Google Scholar 

  4. Garcia, M., Labarta, J., Corbalan, J.: Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am. J. Hum. Genet. 100(6), 895–906 (2017)

    Article  Google Scholar 

  5. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. ACM Sigmod Rec. 35(3), 34–41 (2006)

    Article  Google Scholar 

  6. Cirillo, D., Valencia, A.: Big data analytics for personalized medicine. Curr. Opin. Biotechnol. 58, 161–167 (2019). https://doi.org/10.1016/j.copbio.2019.03.004. SBN

    Article  Google Scholar 

  7. Duran, A., Ayguadé, E., Badia, R.M., et al.: OmpSs: a proposal for programming heterogeneous multi-core architectures. Parallel Process. Lett. 21(2), 173–193 (2011)

    Article  MathSciNet  Google Scholar 

  8. Garcia-Gasulla, M., Josep-Fabrego, M., Eguzkitza, B., Mantovani, F.: Computational fluid and particle dynamics simulations for respiratory system: Runtime optimization on an arm cluster. In: Proceedings of the 47th International Conference on Parallel Processing Companion, p. 11. ACM (2018)

    Google Scholar 

  9. Gkoutos, G.V., Schofield, P.N., Hoehndorf, R.: The anatomy of phenotype ontologies: principles, properties and applications. Briefings Bioinform. 19(5), 1008–1021 (2017)

    Article  Google Scholar 

  10. Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE Intell. Syst. 24(2), 8–12 (2009)

    Article  Google Scholar 

  11. Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: The role of ontologies in biological and biomedical research: a functional perspective. Briefings Bioinform. 16(6), 1069–1080 (2015). https://doi.org/10.1093/bib/bbv011

    Article  Google Scholar 

  12. Köhler, S., Carmody, L., Vasilevsky, N., et al.: Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res. 47(D1), D1018–D1027 (2018). https://doi.org/10.1093/nar/gky1105

    Article  Google Scholar 

  13. Message Passing Interface Forum: MPI: A message-passing interface standard. Version 3.1. University of Tennessee, June 2015

    Google Scholar 

  14. OpenMP Architecture Review Board: OpenMP Application Programming Interface, version 5.0 (2018)

    Google Scholar 

  15. Rhee, S.Y., Wood, V., Dolinski, K., Draghici, S.: Use and misuse of the gene ontology annotations. Nat. Rev. Genet. 9, 509–515 (2008)

    Article  Google Scholar 

  16. Schulze-Kremer, S.: Ontologies for molecular biology and bioinformatics. In Silico Biol. 2, 179–93 (2002)

    Google Scholar 

  17. Shefchek, K.A., Harris, N.L., Gargano, M., et al.: The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 48(D1), D704–D715 (2019). https://doi.org/10.1093/nar/gkz997

    Article  Google Scholar 

  18. Smith, B., Ashburner, M., Rosse, C., Bard, J., et al.: The obo foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25, 1251–5 (2007)

    Article  Google Scholar 

  19. Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., Meyre, D.: Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467–484 (2019)

    Article  Google Scholar 

  20. The Gene Ontology Consortium: The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 47(D1), D330–D338 (2018)

    Google Scholar 

  21. Tomczak, A., et al.: Interpretation of biological experiments changes with evolution of the gene ontology and its annotations. Sci. Rep. 8(1), 1–10 (2018)

    Article  Google Scholar 

  22. Zhang, W., Zhang, H., Yang, H., et al.: Computational resources associating diseases with genotypes, phenotypes and exposures. Briefings Bioinform. 20(6), 2098–2115 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been developed with the support of the Severo Ochoa Program (SEV-2015-0493); the Spanish Ministry of Science and Innovation (TIN2015-65316-P); and the Joint Study Agreement no. W156463 under the IBM/BSC Deep Learning Center agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Teruel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Josep-Fabregó, M. et al. (2020). GOPHER, an HPC Framework for Large Scale Graph Exploration and Inference. In: Jagode, H., Anzt, H., Juckeland, G., Ltaief, H. (eds) High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer Science(), vol 12321. Springer, Cham. https://doi.org/10.1007/978-3-030-59851-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59851-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59850-1

  • Online ISBN: 978-3-030-59851-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics