Abstract
As HPC systems grow larger and more complex, characterizing the relationships between their different components and gaining insight on their behavior becomes difficult. In turn, this puts a burden on both system administrators and developers who aim at improving the efficiency and reliability of systems, algorithms and applications. Automated approaches capable of extracting a system’s behavior, as well as identifying anomalies and outliers, are necessary more than ever.
In this work we discuss our exploratory study of Bayesian Gaussian mixture models, an unsupervised machine learning technique, to characterize the performance of an HPC system’s components, as well as to identify anomalies, based on sensor data. We propose an algorithmic framework for this purpose, implement it within the DCDB monitoring and operational data analytics system, and present several case studies carried out using data from a production HPC system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ates, E., et al.: Taxonomist: application detection through rich monitoring data. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018. LNCS, vol. 11014, pp. 92–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96983-1_7
Baseman, E., Blanchard, S., DeBardeleben, N., Bonnie, A., et al.: Interpretable anomaly detection for monitoring of high performance computing systems. In: Proceedings of the ACM SIGKDD 2016 Workshops (2016)
Borghesi, A., Libri, A., Benini, L., Bartolini, A.: Online anomaly detection in HPC systems. In: Proceedings of AICAS 2019, pp. 229–233. IEEE (2019)
Bourassa, N., Johnson, W., Broughton, J., Carter, D.M., et al.: Operational data analytics: optimizing the national energy research scientific computing center cooling systems. In: Proceedings of the ICPP 2019 Workshops, pp. 5:1–5:7. ACM (2019)
Bourassa, N., Ott, M.: EEHPCWG operational data analytics survey (2019). https://eehpcwg.llnl.gov/assets/sc19_11_425_525_operational_data_analytics_ott_bourassa.pdf
Cappello, F., Geist, A., Gropp, W., Kale, S., et al.: Toward exascale resilience: 2014 update. Supercomput. Front. Innovations 1(1), 5–28 (2014)
Cohen, I., Chase, J.S., Goldszmidt, M., Kelly, T., Symons, J.: Correlating instrumentation data to system states: a building block for automated diagnosis and control. In: OSDI, vol. 4, p. 16 (2004)
Dani, M.C., Doreau, H., Alt, S.: K-means application for anomaly detection and log classification in HPC. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10351, pp. 201–210. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60045-1_23
Eastep, J., et al.: Global extensible open power manager: a vehicle for HPC community collaboration on co-designed energy management solutions. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS, vol. 10266, pp. 394–412. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58667-0_21
Gabel, M., Gilad-Bachrach, R., Bjorner, N., Schuster, A.: Latent fault detection in cloud services. Microsoft Research, Technical report MSR-TR-2011-83 (2011)
Gainaru, A., Cappello, F.: Errors and faults. In: Herault, T., Robert, Y. (eds.) Fault-Tolerance Techniques for High-Performance Computing. CCN, pp. 89–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20943-2_2
Guan, Q., Fu, S.: Adaptive anomaly identification by exploring metric subspace in cloud computing infrastructures. In: Proceedings of SRDS 2013, pp. 205–214. IEEE (2013)
Inadomi, Y., Patki, T., Inoue, K., Aoyagi, M., et al.: Analyzing and mitigating the impact of manufacturing variability in power-constrained supercomputing. In: Proceedings of SC 2015, pp. 1–12. IEEE (2015)
Münz, G., Li, S., Carle, G.: Traffic anomaly detection using k-means clustering. In: Proceedings of the GI/ITG Workshop MMBnet, pp. 13–14 (2007)
Netti, A., Mueller, M., Auweter, A., Guillen, C., et al.: From facility to application sensor data: modular, continuous and holistic monitoring with DCDB. In: Proceedings of SC 2019. ACM (2019)
Netti, A., Mueller, M., Guillen, C., Ott, M., et al.: DCDB Wintermute: enabling online and holistic operational data analytics on HPC systems. In: Proceedings of HPDC 2020. ACM (2020)
Roberts, S.J., Husmeier, D., Rezek, I., Penny, W.: Bayesian approaches to Gaussian mixture modeling. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1133–1142 (1998)
Tuncer, O., Ates, E., Zhang, Y., Turk, A., et al.: Online diagnosis of performance variation in HPC systems using machine learning. IEEE Trans. Parallel Distrib. Syst. 30, 883–896 (2018)
Villa, O., Johnson, D.R., Oconnor, M., Bolotin, E., et al.: Scaling the power wall: a path to exascale. In: Proceedings of SC 2014, pp. 830–841. IEEE (2014)
Wang, G., Yang, J., Li, R.: An anomaly detection framework based on ICA and Bayesian classification for IaaS platforms. KSII Trans. Internet Inf. Syst. (TIIS) 10(8), 3865–3883 (2016)
Zhang, X., Meng, F., Chen, P., Xu, J.: TaskInsight: a fine-grained performance anomaly detection and problem locating system. In: Proceedings of CLOUD 2016, pp. 917–920. IEEE (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ozer, G., Netti, A., Tafani, D., Schulz, M. (2020). Characterizing HPC Performance Variation with Monitoring and Unsupervised Learning. In: Jagode, H., Anzt, H., Juckeland, G., Ltaief, H. (eds) High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer Science(), vol 12321. Springer, Cham. https://doi.org/10.1007/978-3-030-59851-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-59851-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59850-1
Online ISBN: 978-3-030-59851-8
eBook Packages: Computer ScienceComputer Science (R0)