Skip to main content

Parameter Identification of RANS Turbulence Model Using Physics-Embedded Neural Network

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12321))

Included in the following conference series:

Abstract

Identifying the appropriate parameters of a turbulence model for a class of flow usually requires extensive experimentation and numerical simulations. Therefore even a modest improvement of the turbulence model can significantly reduce the overall cost of a three-dimensional, time-dependent simulation. In this paper we demonstrate a novel method to find the optimal parameters in the Reynolds-averaged Navier–Stokes (RANS) turbulence model using high-fidelity direct numerical simulation (DNS) data. A physics informed neural network (PINN) that is embedded with the turbulent transport equations is studied, physical loss functions are proposed to explicitly impose information of the transport equations to neural networks. This approach solves an inverse problem by treating the five parameters in turbulence model as random variables, with the turbulent kinetic energy and dissipation rate as known quantities from DNS simulation. The objective is to optimize the five parameters in turbulence closures using the PINN leveraging limited data available from costly high-fidelity DNS data. We validated this method on two test cases of flow over bump. The recommended values were found to be \(C_{\epsilon 1}\) = 1.302, \(C_{\epsilon 2}\) = 1.862, \(C_{\mu }\) = 0.09, \(\sigma _K\) = 0.75, \(\sigma _{\epsilon }\) = 0.273; the mean absolute error of the velocity profile between RANS and DNS decreased by 22% when using these neural network inferred parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ray, J., Dechant, L., Lefantzi, S., Ling, J., Arunajatesan, S.: Robust Bayesian calibration of a model for compressible jet-in-crossflow simulations. AIAA J. 56(12), 4893–4909 (2018)

    Article  Google Scholar 

  2. Thies, A.T., Tam, C.K.: Computation of turbulent axisymmetric and nonaxisymmetric jet flows using the \(\kappa -\epsilon \) model. AIAA J. 34(2), 309–316 (1996)

    Article  Google Scholar 

  3. Yakhot, V., Orszag, S.A.: Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1(1), 3–51 (1986)

    Article  MathSciNet  Google Scholar 

  4. Durbin, P.A.: Separated flow computations with the \(\kappa -\epsilon \)-v-squared model. AIAA J. 33(4), 659–664 (1995)

    Article  Google Scholar 

  5. Shih, T., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J.: A new \(\kappa -\epsilon \) eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 24(3), 227–238 (1995)

    Article  Google Scholar 

  6. Shirzadi, M., Mirzaei, P.A., Naghashzadegan, M.: Improvement of k-epsilon turbulence model for CFD simulation of atmospheric boundary layer around a high-rise building using stochastic optimization and monte carlo sampling technique. J. Wind Eng. Ind. Aerodyn. 171, 366–379 (2017)

    Article  Google Scholar 

  7. Dow, E., Wang, Q.: Quantification of structural uncertainties in the \(\kappa -w\) turbulence model, p. 1762 (2011)

    Google Scholar 

  8. Kato, H., Obayashi, S.: Statistical approach for determining parameters of a turbulence model, pp. 2452–2457 (2012)

    Google Scholar 

  9. Launder, B.E., Sharma, B.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1(2), 131–137 (1974)

    Article  Google Scholar 

  10. Hanjalić, K., Launder, B.E.: A reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52(4), 609–638 (1972)

    Article  Google Scholar 

  11. Platteeuw, P., Loeven, G., Bijl, H.: Uncertainty quantification applied to the k-epsilon model of turbulence using the probabilistic collocation method, p. 2150 (2008)

    Google Scholar 

  12. Jones, W., Launder, B.E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15(2), 301–314 (1972)

    Article  Google Scholar 

  13. Chien, K.: Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model. AIAA J. 20(1), 33–38 (1982)

    Article  Google Scholar 

  14. Zhang, J., Fu, S.: An efficient approach for quantifying parameter uncertainty in the SST turbulence model. Comput. Fluids 181, 173–187 (2019)

    Article  MathSciNet  Google Scholar 

  15. Schaefer, J., Hosder, S., West, T., Rumsey, C., Carlson, J., Kleb, W.: Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows. AIAA J. 55(1), 195–213 (2017)

    Article  Google Scholar 

  16. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  17. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

    Article  MathSciNet  Google Scholar 

  18. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. arXiv preprint arXiv:1907.04502 (2019)

  19. Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech. Eng. 360, 112789 (2020)

    Article  MathSciNet  Google Scholar 

  20. Nabian, M.A., Meidani, H.: A deep neural network surrogate for high-dimensional random partial differential equations. arXiv preprint 1806 (2018)

    Google Scholar 

  21. Nabian, M.A., Meidani, H.: Physics-driven regularization of deep neural networks for enhanced engineering design and analysis. J. Comput. Inf. Sci. Eng. 20(1), 011006 (2020)

    Article  Google Scholar 

  22. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

    Article  MathSciNet  Google Scholar 

  23. Marquillie, M., Laval, J., Dolganov, R.: Direct numerical simulation of a separated channel flow with a smooth profile. J. Turbul. 9, N1 (2008)

    Article  Google Scholar 

  24. Marquillie, M., Ehrenstein, U., Laval, J.: Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205–240 (2011)

    Article  Google Scholar 

  25. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, La Canada (1998)

    Google Scholar 

  26. Benzi, R., Biferale, L., Bonaccorso, F., et al.: TurBase: a software platform for research in experimental and numerical fluid dynamics, pp. 51–57 (2017)

    Google Scholar 

  27. Jesus, A., Azevedo, J.L., Laval, J.: Large eddy simulations and RANS computations of adverse pressure gradient flows, p. 267 (2013)

    Google Scholar 

  28. Borrell, R., et al.: Parallel mesh partitioning based on space filling curves. Comput. Fluids 173, 264–2724 (2018)

    Article  MathSciNet  Google Scholar 

  29. Vazquez, M., et al.: Alya: multiphysics engineering simulation toward exascale. J. Comput. Sci. 14, 15–27 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work utilizes resources supported by the National Science Foundation’s Major Research Instrumentation program, grant #1725729, as well as the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirui Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, S., Vellakal, M., Koric, S., Kindratenko, V., Cui, J. (2020). Parameter Identification of RANS Turbulence Model Using Physics-Embedded Neural Network. In: Jagode, H., Anzt, H., Juckeland, G., Ltaief, H. (eds) High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer Science(), vol 12321. Springer, Cham. https://doi.org/10.1007/978-3-030-59851-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59851-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59850-1

  • Online ISBN: 978-3-030-59851-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics