Skip to main content

3D Volume Reconstruction from Single Lateral X-Ray Image via Cross-Modal Discrete Embedding Transition

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

In this paper, we propose a deep neural network (DNN)-based volumetric image reconstruction framework, enabling an end-to-end volume inference from a 2D X-ray image. The proposed framework is built upon the vector quantised-variational autoencoders of the 2D X-ray images and the 3D cone-beam CT (CBCT) images. We present a bi-directional cross-modal transition module between the discrete latent variables of the 2D and 3D images. In the X-ray-to-CBCT pass, the transition module takes the feature maps of the X-ray images as an input and outputs the discrete volumetric embedding, which is combined with the codebook in the embedding space for the reconstruction of CBCT images. On the other hand, the CBCT-to-X-ray pass realizes the DNN-based volume rendering. Given real clinically-obtained X-ray images without paired volumetric images, we devise an unsupervised learning scheme to optimize the discrete embedding transition module. Our approach utilizes the quantised latent representation and the cross-modality transition module to infer volumetric images. The proposed method has been applied to the lateral X-ray-based CBCT image reconstruction in clinical orthodontics, achieving performance improvements over compared methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bier, B., et al.: Learning to detect anatomical landmarks of the pelvis in x-rays from arbitrary views. Int. J. Comput. Assist. Radiol. Surg. 14, 1463–1473 (2019). https://doi.org/10.1007/s11548-019-01975-5

    Article  Google Scholar 

  2. Bui, M., Albarqouni, S., Schrapp, M., Navab, N., Ilic, S.: X-Ray PoseNet: 6 DoF pose estimation for mobile x-Ray devices. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1036–1044 (2017)

    Google Scholar 

  3. Chen, H., et al.: LEARN: learned experts assessment-based reconstruction network for sparse-data CT. IEEE Trans. Med. Imaging 37, 1333–1347 (2018)

    Article  Google Scholar 

  4. Chou, C.R., et al.: 2D/3D image registration using regression learning. Comput. Vis. Image Underst. 117(9), 1095–1106 (2013)

    Article  Google Scholar 

  5. Grupp, R.B., et al.: Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration. Int. J. Comput. Assist. Radiol. Surg. 15, 759–769 (2020). https://doi.org/10.1007/s11548-020-02162-7

    Article  Google Scholar 

  6. Henzler, P., Rasche, V., Ropinski, T., Ritschel, T.: Single-image tomography: 3D volumes from 2D X-Rays. arXiv preprint arXiv:1710.04867 (2017)

  7. Hou, B., et al.: Predicting slice-to-volume transformation in presence of arbitrary subject motion. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 296–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_34

    Chapter  Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Kügler, D., Stefanov, A., Mukhopadhyay, A.: i3PosNet: instrument pose estimation from X-ray. arXiv preprint arXiv:1802.09575 (2018)

  10. Li, R., et al.: 3D tumor localization through real-time volumetric X-ray imaging for lung cancer radiotherapy. Med. Phys. 38(5), 2783–94 (2011)

    Article  Google Scholar 

  11. Likar, B.: A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16(3), 642–661 (2012)

    Article  Google Scholar 

  12. Miao, S., et al.: Dilated FCN for multi-agent 2D/3D medical image registration. In: AAAI (2018)

    Google Scholar 

  13. Miao, S., Wang, Z.J., Liao, R.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. MI 35(5), 1352–1363 (2016)

    Article  Google Scholar 

  14. Montoya, J., Zhang, C., Li, K., Chen, G.H.: Volumetric scout CT images reconstructed from conventional two-view radiograph localizers using deep learning (Conference Presentation) (2019)

    Google Scholar 

  15. van den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, pp. 6306–6315 (2017)

    Google Scholar 

  16. Pei, Y., Dai, F., Xu, T., Zha, H., Ma, G.: Volumetric reconstruction of craniofacial structures from 2D lateral cephalograms by regression forest. In: IEEE ICIP, pp. 4052–4056 (2016)

    Google Scholar 

  17. Pei, Y., et al.: Non-rigid craniofacial 2D-3D registration using CNN-based regression. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 117–125. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_14

    Chapter  Google Scholar 

  18. Razavi, A., van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Advances in Neural Information Processing Systems, pp. 14837–14847 (2019)

    Google Scholar 

  19. Shen, L., Zhao, W., Xing, L.: Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nat. Biomed. Eng. 3, 880–888 (2019)

    Article  Google Scholar 

  20. Syben, C., Michen, M., Stimpel, B., Seitz, S., Ploner, S.B., Maier, A.K.: PYRO-NN: python reconstruction operators in neural networks. Med. Phys. 46, 5110–5115 (2019)

    Article  Google Scholar 

  21. Toth, D., Cimen, S., Ceccaldi, P., Kurzendorfer, T., Rhode, K.S., Mountney, P.: Training deep networks on domain randomized synthetic X-ray data for cardiac interventions. In: MIDL (2019)

    Google Scholar 

  22. Toth, D., et al.: 3D/2D model-to-image registration by imitation learning for cardiac procedures. Int. J. Comput. Assist. Radiol. Surg. 13(8), 1141–1149 (2018). https://doi.org/10.1007/s11548-018-1774-y

    Article  Google Scholar 

  23. Wu, Y., et al.: Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI. Magn. Reson. Imaging 66, 93–103 (2019)

    Article  Google Scholar 

  24. Würfl, T., et al.: Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems. IEEE Trans. Med. Imaging 37, 1454–1463 (2018)

    Article  Google Scholar 

  25. Xu, Y., et al.: A method for volumetric imaging in radiotherapy using single X-ray projection. Med. Phys. 42(5), 2498–509 (2014)

    Article  Google Scholar 

  26. Ying, X., Guo, H., Ma, K., Wu, J.Y., Weng, Z., Zheng, Y.: X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10611–10620 (2019)

    Google Scholar 

  27. Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 599–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_67

    Chapter  Google Scholar 

  28. Zhang, Y., et al.: Temporal consistent 2D-3D registration of lateral cephalograms and cone-beam computed tomography images. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 371–379. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_43

    Chapter  Google Scholar 

  29. Zheng, G.: 3D volumetric intensity reconsturction from 2D X-ray images using partial least squares regression. In: IEEE ISBI, pp. 1268–1271 (2013)

    Google Scholar 

  30. Zheng, J., Miao, S., Liao, R.: Learning CNNs with pairwise domain adaption for real-time 6DoF ultrasound transducer detection and tracking from X-ray images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 646–654. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_73

    Chapter  Google Scholar 

  31. Zhu, B., Liu, J.Z., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555, 487–492 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC 61876008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuru Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Y. et al. (2020). 3D Volume Reconstruction from Single Lateral X-Ray Image via Cross-Modal Discrete Embedding Transition. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics