Skip to main content

Gambling Adversarial Nets for Hard Sample Mining and Structured Prediction: Application in Ultrasound Thyroid Nodule Segmentation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

  • 3491 Accesses

Abstract

Most real-world datasets are characterized by long-tail distributions over classes or, more generally, over underlying visual representations. Consequently, not all samples contribute equally to the training of a model and therefore, methods properly evaluating the importance/difficulty of the samples can considerably improve the training efficiency and effectivity. Moreover, preserving certain inter-pixel/voxel structural qualities and consistencies in the dense predictions of semantic segmentation models is often highly desirable; accordingly, a recent trend of using adversarial training is clearly observable in the literature that aims for achieving higher-level structural qualities. However, as we argue and show, the common formulation of adversarial training for semantic segmentation is ill-posed, sub-optimal, and may result in side-effects, such as the disability to express uncertainties.

In this paper, we suggest using recently introduced Gambling Adversarial Networks that revise the conventional adversarial training for semantic segmentation, by reformulating the fake/real discrimination task into a correct/wrong distinction. This forms then a more effective training strategy that simultaneously serves for both hard sample mining as well as structured prediction. Applying the gambling networks to the ultrasound thyroid nodule segmentation task, the new adversarial training dynamics consistently improve the qualities of the predictions shown over different state-of-the-art semantic segmentation architectures and various metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  2. Katharopoulos, A., Fleuret, F.: Not all samples are created equal: deep learning with importance sampling. arXiv preprint arXiv:1803.00942 (2018)

  3. Van Grinsven, M.J.J.P., van Ginneken, B., Hoyng, C.B., Theelen, T., Sánchez, C.I.: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans. Med. Imaging 35(5), 1273–1284 (2016)

    Article  Google Scholar 

  4. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  5. Bulo, S.R., Neuhold, G., Kontschieder, P.: Loss max-pooling for semantic image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2126–2135 (2017)

    Google Scholar 

  6. Samson, L., van Noord, N., Booij, O., Hofmann, M., Gavves, E., Ghafoorian, M.: I bet you are wrong: gambling adversarial networks for structured semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  7. Nie, D., Wang, L., Xiang, L., Zhou, S., Adeli, E., Shen, D.: Difficulty-aware attention network with confidence learning for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1085–1092 (2019)

    Google Scholar 

  8. Nie, D., Shen, D.: Adversarial confidence learning for medical image segmentation and synthesis. Int. J. Comput. Vis. 1–20 (2020)

    Google Scholar 

  9. Mehrtash, A., Wells III, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. arXiv preprint arXiv:1911.13273 (2019)

  10. Ghafoorian, M., et al.: Student beats the teacher: deep neural networks for lateral ventricles segmentation in brain MR. In: Medical Imaging 2018: Image Processing, vol. 10574, p. 105742U. International Society for Optics and Photonics (2018)

    Google Scholar 

  11. Wang, P., Chung, A.C.S.: Focal dice loss and image dilation for brain tumor segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 119–127. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_14

    Chapter  Google Scholar 

  12. Abulnaga, S.M., Rubin, J.: Ischemic stroke lesion segmentation in CT perfusion scans using pyramid pooling and focal loss. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 352–363. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_36

    Chapter  Google Scholar 

  13. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. arXiv preprint arXiv:1803.09050 (2018)

  14. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  15. Luc, P., Couprie, C., Chintala, S., Verbeek, J.: Semantic segmentation using adversarial networks. In: NIPS Workshop on Adversarial Training (2016)

    Google Scholar 

  16. Xue, Y., Xu, T., Zhang, H., Long, L.R., Huang, X.: SegAN: adversarial network with multi-scale \(L_1\) loss for medical image segmentation. Neuroinformatics 16(3–4), 383–392 (2018)

    Article  Google Scholar 

  17. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  18. Rezaei, M., et al.: A conditional adversarial network for semantic segmentation of brain tumor. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 241–252. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_21

    Chapter  Google Scholar 

  19. Zanjani, F.G., et al.: Deep learning approach to semantic segmentation in 3D point cloud intra-oral scans of teeth. In: International Conference on Medical Imaging with Deep Learning, pp. 557–571 (2019)

    Google Scholar 

  20. Moeskops, P., Veta, M., Lafarge, M.W., Eppenhof, K.A.J., Pluim, J.P.W.: Adversarial training and dilated convolutions for brain MRI segmentation. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 56–64. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_7

    Chapter  Google Scholar 

  21. Ghafoorian, M., Nugteren, C., Baka, N., Booij, O., Hofmann, M.: EL-GAN: embedding loss driven generative adversarial networks for lane detection. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 256–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_15

    Chapter  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  25. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  26. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  27. Zhou, J., et al.: Thyroid nodule segmentation and classification in ultrasound images, March 2020

    Google Scholar 

  28. Csurka, G., Larlus, D., Perronnin, F., Meylan, F.: What is a good evaluation measure for semantic segmentation?. In: BMVC, vol. 27, p. 2013 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Bakhtiariziabari .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3847 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakhtiariziabari, M., Ghafoorian, M. (2020). Gambling Adversarial Nets for Hard Sample Mining and Structured Prediction: Application in Ultrasound Thyroid Nodule Segmentation. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics