Skip to main content

AdaBoosted Deep Ensembles: Getting Maximum Performance Out of Small Training Datasets

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

Even though state-of-the-art convolutional neural networks (CNNs) have shown outstanding performance in a wide range of imaging applications, they typically require large amounts of high-quality training data to prevent over fitting. In the case of medical image segmentation, it is often difficult to gain access to large data sets, particularly those involving rare diseases, such as skull-based chordoma tumors. This challenge is exacerbated by the difficulty in performing manual delineations, which are time-consuming and can have inconsistent quality. In this work, we propose a deep ensemble method that learns multiple models, trained using a leave-one-out strategy, and then aggregates the outputs for test data through a boosting strategy. The proposed method was evaluated for chordoma tumor segmentation in head magnetic resonance images using three well-known CNN architectures; VNET, UNET, and Feature pyramid network (FPN). Significantly improved Dice scores (up to 27%) were obtained using the proposed ensemble method when compared to a single model trained with all available training subjects. The proposed ensemble method can be applied to any neural network based segmentation method to potentially improve generalizability when learning from a small sized dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  2. Benediktsson, J.A., Swain, P.H.: Consensus theoretic classification methods. IEEE Trans. Syst. Man Cybern. 22(4), 688–704 (1992)

    Article  Google Scholar 

  3. Bnouni, N., Rekik, I., Rhim, M.S., Amara, N.E.B.: Dynamic multi-scale CNN forest learning for automatic cervical cancer segmentation. In: Shi, Y., Suk, H-Il, Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 19–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_3

    Chapter  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn 45(1), 5–32 (2001)

    Article  Google Scholar 

  5. Chen, L., Bentley, P., Rueckert, D.: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. NeuroImage Clin. 15, 633–643 (2017)

    Article  Google Scholar 

  6. Dasarathy, B.V., Sheela, B.V.: A composite classifier system design: concepts and methodology. Proc. IEEE 67(5), 708–713 (1979)

    Article  Google Scholar 

  7. Dolz, J., Desrosiers, C., Wang, L., Yuan, J., Shen, D., Ayed, I.B.: Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation. Comput. Med. Imaging Graph. 79, 101660 (2020)

    Article  Google Scholar 

  8. Freung, Y., Shapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  9. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990)

    Article  Google Scholar 

  10. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6(2), 181–214 (1994)

    Article  Google Scholar 

  11. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint, (2014) arXiv:1412.6980

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  14. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125. IEEE (2017)

    Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988. IEEE (2017)

    Google Scholar 

  17. Manjón, J.V., et al.: MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting. Comput. Med. Imaging Graph. 69, 43–51 (2018)

    Article  Google Scholar 

  18. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  19. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  20. Ng, A., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. In: Intl. Conf. on Neural Information Processing Systems (NIPS), pp. 841–848 (2002)

    Google Scholar 

  21. Pham, D.L., Prince, J.L.: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recogn. Lett. 20(1), 57–68 (1999)

    Article  Google Scholar 

  22. Reza, S.M.S., Roy, S., Park, D.M., Pham, D.L., Butman, J.A.: Cascaded convolutional neural networks for spine chordoma tumor segmentation from MRI. In: Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging, International Society for Optics and Photonics. 10953, p. 1095325 (2019)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)

    Google Scholar 

  25. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)

    Article  Google Scholar 

  26. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  27. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  28. Zilly, J., Buhmann, J.M., Mahapatra, D.: Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput. Med. Imaging Graph. 55, 28–41 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This works was partially supported by the Department of Defense in the Center for Neuroscience and Regenerative Medicine, by grant RG-1507–05243 from the National Multiple Sclerosis Society, and by the Intramural Research Program of the National Institutes of Health, Clinical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed M. S. Reza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reza, S.M.S., Butman, J.A., Park, D.M., Pham, D.L., Roy, S. (2020). AdaBoosted Deep Ensembles: Getting Maximum Performance Out of Small Training Datasets. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics