Skip to main content

Open-Set Recognition for Skin Lesions Using Dermoscopic Images

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Abstract

Application of deep neural networks in learning underlying dermoscopic patterns and classifying skin-lesion pathology is crucial. It can help in early diagnosis which can lead to timely therapeutic intervention and efficacy. To establish the clinical applicability of such techniques it is important to delineate each pathology with superior accuracy. However, with innumerable types of skin conditions and supervised closed class classification methods trained on limited classes, applicability into clinical workflow could be unattainable. To mitigate this issue our work considers this as an open-set recognition problem. The technique is divided into two stages, closed-set classification of labelled data and open-set recognition for unknown classes which employs an autoencoder for conditional reconstruction of the input image. We compare our technique to a traditional baseline method and demonstrate on ISIC and Derm7pt data, higher accuracy and sensitivity for known as well as unknown classes. In summary, our open-set recognition method for dermoscopic images illustrates high clinical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572. IEEE (2016). https://doi.org/10.1109/CVPR.2016.173

  2. Codella, N.C.F., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). CoRR abs/1710.05006 (2017). http://arxiv.org/abs/1710.05006

  3. Combalia, M., et al.: Bcn20000: dermoscopic lesions in the wild, August 2019

    Google Scholar 

  4. Ge, Z., Demyanov, S., Chen, Z., Garnavi, R.: Generative openmax for multi-class open set classification. arXiv preprint (2017). arXiv:1707.07418

  5. Gessert, N., Nielsen, M., Shaikh, M., Werner, R., Schlaefer, A.: Skin lesion classification using ensembles of multi-resolution efficientnets with meta data (2019)

    Google Scholar 

  6. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  7. Kawahara, J., Daneshvar, S., Argenziano, G., Hamarneh, G.: 7-point checklist and skin lesion classification using multi-task multi-modal neural nets. IEEE J. Biomed. Health Inform. 1–1, April 2018. https://doi.org/10.1109/JBHI.2018.2824327

  8. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. Int. Conf. Learn. Represent. December 2014

    Google Scholar 

  9. Leiter, U., Garbe, C.: Epidemiology of melanoma and nonmelanoma skin cancer-the role of sunlight. Sunlight, Vitamin D and Skin Cancer, pp. 89–103. Springer, Berlin (2008). https://doi.org/10.1007/978-0-387-77574-6_8

    Chapter  Google Scholar 

  10. Neal, L., Olson, M., Fern, X., Wong, W.K., Li, F.: Open set learning with counterfactual images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 613–628 (2018)

    Google Scholar 

  11. Oza, P., Patel, V.M.: C2ae: class conditioned auto-encoder for open-set recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2302–2311. IEEE (2019). https://doi.org/10.1109/CVPR.2019.00241

  12. Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.: Film: visual reasoning with a general conditioning layer (2017)

    Google Scholar 

  13. di Ruffano, L.F., et al.: Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults. Cochrane Database Syst. Rev. (2018). https://doi.org/10.1002/14651858.cd013186

  14. Scheirer, W.J., Jain, L.P., Boult, T.E.: Probability models for open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2317–2324 (2014). https://doi.org/10.1109/TPAMI.2014.2321392

    Article  Google Scholar 

  15. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1757–1772 (2013). https://doi.org/10.1109/TPAMI.2012.256

    Article  Google Scholar 

  16. Shu, L., Xu, H., Liu, B.: Doc: deep open classification of text documents. arXiv preprint (2017). arXiv:1709.08716

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)

    Google Scholar 

  18. Smith, L.N.: Cyclical learning rates for training neural networks (2015)

    Google Scholar 

  19. Sonthalia, F.: Dermoscopy overview and extradiagnostic applications. StatPearls Publishing, StatPearls (2020)

    Google Scholar 

  20. Sultana, N.N., Puhan, N.B.: Recent deep learning methods for melanoma detection: a review. In: International Conference on Mathematics and Computing (2018). https://doi.org/10.1007/978-981-13-0023-3_12

  21. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–656 (2015). https://doi.org/10.1109/cvpr.2015.7298664

  22. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset: a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018). https://doi.org/10.1038/sdata.2018.161

    Article  Google Scholar 

  23. Zhang, H., Patel, V.M.: Sparse representation-based open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1690–1696 (2017). https://doi.org/10.1109/TPAMI.2016.2613924

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhura Ingalhalikar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Budhwant, P., Shinde, S., Ingalhalikar, M. (2020). Open-Set Recognition for Skin Lesions Using Dermoscopic Images. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics