Skip to main content

A Polynomial Delay Algorithm for Enumerating 2-Edge-Connected Induced Subgraphs

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12340))

Included in the following conference series:

Abstract

The problem of enumerating connected induced subgraphs of a given graph is classical and studied well. It is known that connected induced subgraphs can be enumerated in constant time for each subgraph. In this paper, we focus on highly connected induced subgraphs. The most major concept of connectivity on graphs is vertex connectivity. For vertex connectivity, some enumeration problem settings are proposed and enumeration algorithms are proposed, such as k-vertex connected spanning subgraphs. In this paper, we focus on another major concept of graph connectivity, edge-connectivity. This is motivated by the problem of finding evacuation routes in road networks. In evacuation routes, edge-connectivity is important, since highly edge-connected subgraphs ensure multiple routes between two vertices. In this paper, we consider the problem of enumerating 2-edge-connected induced subgraphs of a given graph. We present an algorithm that enumerates 2-edge-connected induced subgraphs of an input graph G with n vertices and m edges. Our algorithm enumerates all the 2-edge-connected induced subgraphs in \(\text {O}(n^3 m \left| \mathcal {S}_G\right| )\) time, where \(\mathcal {S}_G\) is the set of the 2-edge-connected induced subgraphs of G. Moreover, by slightly modifying the algorithm, we have a polynomial delay enumeration algorithm for 2-edge-connected induced subgraphs.

This work was supported by JSPS KAKENHI Grant Numbers JP18H04091 and JP19K11812.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A closed-ear decomposition is an ear decomposition if every ear in the decomposition is an open ear.

References

  1. Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal \(k\)-edge-connected subgraphs in large networks by random contraction. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM 2013, pp. 909–918 (2013)

    Google Scholar 

  2. Avis, D., Fukuda, K.: Reverse search for enumeration. Discret. Appl. Math. 65(1–3), 21–46 (1996)

    Article  MathSciNet  Google Scholar 

  3. Birmelé, E., et al.: Optimal listing of cycles and st-paths in undirected graphs. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 1884–1896 (January 2012)

    Google Scholar 

  4. Boros, E., Borys, K., Elbassioni, K.M., Gurvich, V., Makino, K., Rudolf, G.: Generating minimal \(k\)-vertex connected spanning subgraphs. In: Proceedings of the 13th Annual International Computing and Combinatorics Conference, COCOON 2007, pp. 222–231 (2007)

    Google Scholar 

  5. Conte, A., Kanté, M.M., Otachi, Y., Uno, T., Wasa, K.: Efficient enumeration of maximal \(k\)-degenerate subgraphs in a chordal graph. In: Proceedings of the 23rd Annual International Computing and Combinatorics Conference, COCOON 2017, pp. 150–161 (2017)

    Google Scholar 

  6. Conte, A., Uno, T.: New polynomial delay bounds for maximal subgraph enumeration by proximity search. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pp. 1179–1190 (2019)

    Google Scholar 

  7. Conte, A., De Virgilio, R., Maccioni, A., Patrignani, M., Torlone, R.: Finding all maximal cliques in very large social networks. In: Proceedings of the 19th International Conference on Extending Database Technology, pp. 173–184 (2016)

    Google Scholar 

  8. Ferreira, R., Grossi, R., Rizzi, R., Sacomoto, G., Sagot, M.-F.: Amortized \({\tilde{O}}\)(|V|)-delay algorithm for listing chordless cycles in undirected graphs. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 418–429. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-2_35

    Chapter  Google Scholar 

  9. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

    Article  MathSciNet  Google Scholar 

  10. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K.: Enumerating spanning and connected subsets in graphs and matroids. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 444–455. Springer, Heidelberg (2006). https://doi.org/10.1007/11841036_41

    Chapter  Google Scholar 

  11. Kurita, K., Wasa, K., Uno, T., Arimura, H.: Efficient enumeration of induced matchings in a graph without cycles with length four. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101–A(9), 1383–1391 (2018)

    Article  Google Scholar 

  12. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27810-8_23

    Chapter  Google Scholar 

  13. Marino, A.: Analysis and Enumeration. Atlantis Press (2015)

    Google Scholar 

  14. Maxwell, S., Chance, M.R., Koyutürk, M.: Efficiently enumerating all connected induced subgraphs of a large molecular network. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) AlCoB 2014. LNCS, vol. 8542, pp. 171–182. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07953-0_14

    Chapter  Google Scholar 

  15. Nakano, S., Uno, T.: Generating colored trees. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 249–260. Springer, Heidelberg (2005). https://doi.org/10.1007/11604686_22

    Chapter  Google Scholar 

  16. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks 5(3), 237–252 (1975)

    Article  MathSciNet  Google Scholar 

  17. Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning trees of undirected graphs. SIAM J. Comput. 26(3), 678–692 (1997)

    Article  MathSciNet  Google Scholar 

  18. Uno, T.: An efficient algorithm for solving pseudo clique enumeration problem. Algorithmica 56(1), 3–16 (2010)

    Article  MathSciNet  Google Scholar 

  19. Uno, T.: Constant time enumeration by amortization. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 593–605. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3_49

    Chapter  Google Scholar 

  20. Uno, T., Satoh, H.: An efficient algorithm for enumerating chordless cycles and chordless paths. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 313–324. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_27

    Chapter  Google Scholar 

  21. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  Google Scholar 

  22. Wasa, K., Kaneta, Y., Uno, T., Arimura, H.: Constant time enumeration of subtrees with exactly k nodes in a tree. IEICE Trans. Inf. Syst. 97–D(3), 421–430 (2014)

    Article  Google Scholar 

  23. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (September 2000)

    Google Scholar 

  24. Yamanaka, K., Matsui, Y., Nakano, S.-I.: Enumerating highly-edge-connected spanning subgraphs. IEICE Trans. Fundame. Electron. Commun. Comput. Sci. 102–A(9), 1002–1006 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhisa Yamanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sano, Y., Yamanaka, K., Hirayama, T. (2020). A Polynomial Delay Algorithm for Enumerating 2-Edge-Connected Induced Subgraphs. In: Li, M. (eds) Frontiers in Algorithmics. FAW 2020. Lecture Notes in Computer Science(), vol 12340. Springer, Cham. https://doi.org/10.1007/978-3-030-59901-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59901-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59900-3

  • Online ISBN: 978-3-030-59901-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics