Skip to main content

Virtual Environment Assessment for Tasks Based on Sense of Embodiment

  • Conference paper
  • First Online:
HCI International 2020 – Late Breaking Papers: Virtual and Augmented Reality (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12428))

Included in the following conference series:

Abstract

The quality of a virtual environment for a specified task based on the concept of sense of embodiment (SoE) was assessed in this study. The quality of virtual reality (VR) is evaluated based on the VR system or apparatus’s performance; however, we focused on VR users executing tasks in virtual environments and tried to assess the virtual environment for the tasks. We focused on the user’s sense of agency (SoA) and sense of self-location (SoSL), which were considered as components of the SoE. The SoA was measured based on the surface electroencephalogram of two body parts and our SoE questionnaire. We analysed the surface electroencephalogram waveforms using signal averaging and determined the observable latent time from the analysed waveforms for estimating the state of SoA. To assess the different virtual environments, we built two virtual environments composed of different versions of SPIDAR-HS as a haptic interface and a common head-mounted display. The experiment was executed in two virtual environments in addition to the reality environment. In the three environments, the participants executed the rod tracking task (RTT) in a similar way, and their EMG and subjective data were measured during the RTT. From the results, we considered the task performance based on the participants’ SoA and SoSL, and the quality of the two virtual environments were compared. Furthermore, the relation between the quality of the virtual environment and the factors related to the characteristics of haptic and visual interfaces was revealed to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeunet, C., Albert, L., Argelaguet, G., L´ecuyer, A.: Do you feel in control?: towards novel approaches to characterise, manipulate and measure the sense of agency in virtual environments. IEEE Trans. Visual. Comput. Graph. 24(4), 1486–1495 (2018)

    Article  Google Scholar 

  2. Kobayashi, D., et al.: Effect of artificial haptic characteristics on virtual reality performance. In: Yamamoto, S., Mori, H. (eds.) HCII 2019. LNCS, vol. 11570, pp. 24–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22649-7_3

    Chapter  Google Scholar 

  3. Kobayashi, D., Shinya, Y.: Study of virtual reality performance based on sense of agency. In: Yamamoto, S., Mori, H. (eds.) HIMI 2018. LNCS, vol. 10904, pp. 381–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92043-6_32

    Chapter  Google Scholar 

  4. Kilteni, K., Groten, R., Slater, M.: The sense of embodiment in virtual reality. Presence 24(4), 373–387 (2012). Fall 2012

    Article  Google Scholar 

  5. Synofzik, M., Vosgerau, G., Newen, A.: Beyond the comparator model: a multifactorial two step account of agency. Conscious. Cogn. 17(1), 219–239 (2008)

    Article  Google Scholar 

  6. Balslev, D., Cole, J., Miall, R.C.: Proprioception contributes to the sense of agency during visual observation of hand movements: Evidence from temporal judgments of action. J. Cognit. Neurosci. 19(9), 1535–1541 (2007)

    Article  Google Scholar 

  7. Tsukikawa, R., et al.: Construction of experimental system SPIDAR-HS for designing VR guidelines based on physiological behavior measurement. In: Chen, J.Y.C., Fragomeni, G. (eds.) VAMR 2018. LNCS, vol. 10909, pp. 245–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91581-4_18

    Chapter  Google Scholar 

  8. Suzuki, H., et al.: Implementation of two-point control system in SPIDAR-HS for the rod tracking task in virtual reality environment. In: Yamamoto, S., Mori, H. (eds.) HCII 2019. LNCS, vol. 11570, pp. 47–57. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22649-7_5

    Chapter  Google Scholar 

  9. Gonzalez-Franco, M., Peck, T.C.: Avatar embodiment. towards a standardized questionnaire. Front. Robot. AI, 22 June 2018. https://doi.org/10.3389/frobt.2018.00074. Accessed 10 Mar 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshiki Ito , Ryo Nikaido , Hiroya Suzuki or Tetsuya Harada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kobayashi, D., Ito, Y., Nikaido, R., Suzuki, H., Harada, T. (2020). Virtual Environment Assessment for Tasks Based on Sense of Embodiment. In: Stephanidis, C., Chen, J.Y.C., Fragomeni, G. (eds) HCI International 2020 – Late Breaking Papers: Virtual and Augmented Reality. HCII 2020. Lecture Notes in Computer Science(), vol 12428. Springer, Cham. https://doi.org/10.1007/978-3-030-59990-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59990-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59989-8

  • Online ISBN: 978-3-030-59990-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics