Skip to main content

The GPGCD Algorithm with the Bézout Matrix

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12291))

Included in the following conference series:

Abstract

For a given pair of univariate polynomials with real coefficients and a given degree, we propose a modification of the GPGCD algorithm, presented in our previous research, for calculating approximate greatest common divisor (GCD). In the proposed algorithm, the Bézout matrix is used in transferring the approximate GCD problem to a constrained minimization problem, whereas, in the original GPGCD algorithm, the Sylvester subresultant matrix is used. Experiments show that, in the case that the degree of the approximate GCD is large, the proposed algorithm computes more accurate approximate GCDs than those computed by the original algorithm. They also show that the computing time of the proposed algorithm is smaller than that of the SNTLS algorithm, which also uses the Bézout matrix, with a smaller amount of perturbations of the given polynomials and a higher stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The coefficients are generated with the Mersenne Twister algorithm [13] by built-in function Generate with RandomTools:-MersenneTwister in Maple, which approximates a uniform distribution on \([-10, 10]\).

  2. 2.

    Remainders are calculated with built-in function SNAP:-Remainder.

  3. 3.

    We have excluded test polynomials from Group 6 to Group 10, because, for those polynomials, the computing time for the SNTLS algorithm is too long (over 100 min with tests in Group 6 whose degree of input polynomials is 60).

References

  1. Beckermann, B., Labahn, G.: A fast and numerically stable euclidean-like algorithm for detecting relatively prime numerical polynomials. J. Symb. Comput. 26(6), 691–714 (1998). https://doi.org/10.1006/jsco.1998.0235

    Article  MathSciNet  MATH  Google Scholar 

  2. Chi, B., Terui, A.: ct1counter/bezout-gpgcd: Initial release (2020). https://doi.org/10.5281/zenodo.3965389

  3. Chin, P., Corless, R.M., Corliss, G.F.: Optimization strategies for the approximate GCD problem. In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation. pp. 228–235. ACM (1998). https://doi.org/10.1145/281508.281622

  4. Chionh, E.W., Zhang, M., Goldman, R.N.: Fast computation of the Bezout and dixon resultant matrices. J. Symb. Comput. 33(1), 13–29 (2002). https://doi.org/10.1006/jsco.2001.0462

    Article  MathSciNet  MATH  Google Scholar 

  5. Corless, R.M., Gianni, P.M., Trager, B.M., Watt, S.M.: The singular value decomposition for polynomial systems. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation. pp. 195–207. ACM (1995). https://doi.org/10.1145/220346.220371

  6. Corless, R.M., Watt, S.M., Zhi, L.: \(QR\) factoring to compute the GCD of univariate approximate polynomials. IEEE Trans. Signal Process. 52(12), 3394–3402 (2004). https://doi.org/10.1109/TSP.2004.837413

    Article  MathSciNet  MATH  Google Scholar 

  7. Demmel, J.W.: Applied numerical linear algebra. Society for Industrial and Applied Mathematics (1997). https://doi.org/10.1137/1.9781611971446

  8. Diaz-Toca, G.M., Gonzalez-Vega, L.: Barnett’s theorems about the greatest common divisor of several univariate polynomials through bezout-like matrices. J. Symb. Comput. 34(1), 59–81 (2002). https://doi.org/10.1006/jsco.2002.0542

    Article  MathSciNet  MATH  Google Scholar 

  9. Emiris, I.Z., Galligo, A., Lombardi, H.: Certified approximate univariate GCDs. J. Pure Appl. Algebra 117(118), 229–251 (1997). https://doi.org/10.1016/S0022-4049(97)00013-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Kaltofen, E., Yang, Z., Zhi, L.: Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials. In: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation. pp. 169–176. ACM, New York, NY, USA (2006). https://doi.org/10.1145/1145768.1145799

  11. Kaltofen, E., Yang, Z., Zhi, L.: Structured low rank approximation of a Sylvester matrix. In: Wang, D., Zhi, L. (eds.) Symbolic-Numeric Computation, pp. 69–83. Trends in Mathematics, Birkhäuser (2007), https://doi.org/10.1007/978-3-7643-7984-1_5

  12. Karmarkar, N.K., Lakshman, Y.N.: On approximate GCDs of univariate polynomials. J. Symb. Comput. 26(6), 653–666 (1998). https://doi.org/10.1006/jsco.1998.0232

    Article  MathSciNet  MATH  Google Scholar 

  13. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998). https://doi.org/10.1145/272991.272995

    Article  MATH  Google Scholar 

  14. Nakatsukasa, Y., Noferini, V., Townsend, A.: Computing the common zeros of two bivariate functions via Bézout resultants. Numer. Math. 129(1), 181–209 (2014). https://doi.org/10.1007/s00211-014-0635-z

    Article  MATH  Google Scholar 

  15. Pan, V.Y.: Computation of approximate polynomial GCDs and an extension. Inf. and Comput. 167(2), 71–85 (2001). https://doi.org/10.1006/inco.2001.3032

    Article  MathSciNet  MATH  Google Scholar 

  16. Rosen, J.B.: The gradient projection method for nonlinear programming. II. Nonlinear constraints. J. Soc. Indust. Appl. Math. 9, 514–532 (1961). https://doi.org/10.1137/0109044

    Article  MathSciNet  MATH  Google Scholar 

  17. Sasaki, T., Noda, M.T.: Approximate square-free decomposition and root-finding of ill-conditioned algebraic equations. J. Inf. Process. 12(2), 159–168 (1989)

    MathSciNet  MATH  Google Scholar 

  18. Schönhage, A.: Quasi-gcd computations. J. Complexity 1(1), 118–137 (1985). https://doi.org/10.1016/0885-064X(85)90024-X

    Article  MathSciNet  MATH  Google Scholar 

  19. Schost, É., Spaenlehauer, P.-J.: A quadratically convergent algorithm for structured low-rank approximation. Found. Comput. Math. 16(2), 457–492 (2015). https://doi.org/10.1007/s10208-015-9256-x

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, D., Zhi, L.: Structured low rank approximation of a bezout matrix. Math. Comput. Sci. 1(2), 427–437 (2007). https://doi.org/10.1007/s11786-007-0014-6

    Article  MathSciNet  MATH  Google Scholar 

  21. Tanabe, K.: A geometric method in nonlinear programming. J. Optimiz. Theory Appl. 30(2), 181–210 (1980). https://doi.org/10.1007/BF00934495

    Article  MathSciNet  MATH  Google Scholar 

  22. Terui, A.: An iterative method for calculating approximate GCD of univariate polynomials. In: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation - ISSAC 2009. pp. 351–358. ACM Press, New York, New York, USA (2009). https://doi.org/10.1145/1576702.1576750

  23. Terui, A.: GPGCD: an iterative method for calculating approximate gcd of univariate polynomials. Theor. Comput. Sci. 479, 127–149 (2013). https://doi.org/10.1016/j.tcs.2012.10.023

    Article  MathSciNet  MATH  Google Scholar 

  24. Zarowski, C.J., Ma, X., Fairman, F.W.: QR-factorization method for computing the greatest common divisor of polynomials with inexact coefficients. IEEE Trans. Signal Process. 48(11), 3042–3051 (2000). https://doi.org/10.1109/78.875462

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeng, Z.: The numerical greatest common divisor of univariate polynomials. In: Gurvits, L., Pébay, P., Rojas, J.M., Thompson, D. (eds.) Randomization, Relaxation, and Complexity in Polynomial Equation Solving, Contemporary Mathematics, vol. 556, pp. 187–217. AMS (2011). https://doi.org/10.1090/conm/556

  26. Zhi, L.: Displacement structure in computing approximate GCD of univariate polynomials. In: Computer mathematics: Proceedings Six Asian Symposium on Computer Mathematics (ASCM 2003), Lecture Notes Series on Computing, vol. 10, pp. 288–298. World Scientific Publishing, River Edge, NJ (2003), https://doi.org/10.1142/9789812704436_0024

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Terui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chi, B., Terui, A. (2020). The GPGCD Algorithm with the Bézout Matrix. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics