Skip to main content

Symbolic-Numeric Study of Geometric Properties of Adiabatic Waveguide Modes

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Abstract

The eikonal equation links wave optics to ray optics. In the present work, we show that the eikonal equation is also valid for an approximate description of the phase of vector fields describing guided-wave propagation in inhomogeneous waveguide structures in the adiabatic approximation. The main result of the work was obtained using the model of adiabatic waveguide modes. Highly analytical solution procedure makes it possible to obtain symbolic or symbolic-numerical expressions for vector fields of guided modes. Making use of advanced computer algebra systems, we describe fundamental properties of adiabatic modes in symbolic form. Numerical results are also obtained by means of computer algebra systems.

The contribution of D.V. Divakov (investigation – obtaining numerical results) and A.A. Tiutiunnik (investigation – obtaining symbolic results) is supported by the Russian Science Foundation (grant no. 20-11-20257). The contribution of A.L. Sevastianov is conceptualization, formal analysis and writing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966). https://doi.org/10.1109/TAP.1966.1138693

    Article  MATH  Google Scholar 

  2. Taflove, A.: Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems. IEEE Trans. Electromagn. Compat. EMC-22(3), 191–202 (1980). https://doi.org/10.1109/TEMC.1980.30387

  3. Joseph, R., Goorjian, P., Taflove, A.: Direct time integration of Maxwell’s equations in two-dimensional dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons. Opt. Lett. 18(7), 491–493 (1993). https://doi.org/10.1364/OL.18.000491

    Article  Google Scholar 

  4. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs (1982)

    Google Scholar 

  5. Gusev, A.A., et al.: Symbolic-numerical algorithms for solving the parametric self-adjoint 2D elliptic boundary-value problem using high-accuracy finite element method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_12

    Chapter  Google Scholar 

  6. Bogolyubov, A.N., Mukhartova, Yu.V., Gao, J., Bogolyubov, N.A.: Mathematical modeling of plane chiral waveguide using mixed finite elements. In: Progress in Electromagnetics Research Symposium, pp. 1216–1219 (2012)

    Google Scholar 

  7. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)

    MATH  Google Scholar 

  8. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Derbov, V.L.: Solution of the boundary-value problem for a systems of ODEs of large dimension: benchmark calculations in the framework of Kantorovich method. Discrete Continuous Models Appl. Comput. Sci. 3, 31–37 (2016)

    Google Scholar 

  9. Sveshnikov, A.G.: The incomplete Galerkin method. Dokl. Akad. Nauk SSSR 236(5), 1076–1079 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Petukhov, A.A.: Joint application of the incomplete Galerkin method and scattering matrix method for modeling multilayer diffraction gratings. Math. Models Comput. Simul. 6(1), 92–100 (2014). https://doi.org/10.1134/S2070048214010128

    Article  MathSciNet  Google Scholar 

  11. Divakov, D., Sevastianov, L., Nikolaev, N.: Analysis of the incomplete Galerkin method for modelling of smoothly-irregular transition between planar waveguides. J. Phys: Conf. Ser. 788, 012010 (2017). https://doi.org/10.1088/1742-6596/788/1/012010

    Article  Google Scholar 

  12. Fletcher, C.A.J.: Computational Galerkin Methods. Springer, Heidelberg (1984). https://doi.org/10.1007/978-3-642-85949-6

    Book  MATH  Google Scholar 

  13. Tiutiunnik, A.A., Divakov, D.V., Malykh, M.D., Sevastianov, L.A.: Symbolic-numeric implementation of the four potential method for calculating normal modes: an example of square electromagnetic waveguide with rectangular insert. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 412–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_27

    Chapter  Google Scholar 

  14. Sevastyanov, L.A., Sevastyanov, A.L., Tyutyunnik, A.A.: Analytical calculations in maple to implement the method of adiabatic modes for modelling smoothly irregular integrated optical waveguide structures. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 419–431. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10515-4_30

    Chapter  MATH  Google Scholar 

  15. Divakov, D.V., Sevastianov, A.L.: The implementation of the symbolic-numerical method for finding the adiabatic waveguide modes of integrated optical waveguides in CAS maple. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 107–121. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_8

    Chapter  MATH  Google Scholar 

  16. Babich, V.M., Buldyrev, V.S.: Asymptotic Methods in Short-Wave Diffraction Problems. Nauka, Moscow (1972). [English translation: Springer Series on Wave Phenomena 4. Springer, Berlin Heidelberg New York 1991]

    Google Scholar 

  17. Adams, M.J.: An Introduction to Optical Waveguides. Wiley, New York (1981)

    Google Scholar 

  18. Mathematics-based software and services for education, engineering, and research. https://www.maplesoft.com/

  19. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Partial Differential Equations. nterscience, New York (1962)

    Google Scholar 

  20. Hamming, R.W.: Numerical Methods for Scientists and Engineers, 2nd Revised edition. Dover Publications (1987)

    Google Scholar 

  21. Gevorkyan, M., Kulyabov, D., Lovetskiy, K., Sevastianov, L., Sevastianov, A.: Field calculation for the horn waveguide transition in the single-mode approximation of the cross-sections method. Proc. SPIE 10337, 103370H (2017). https://doi.org/10.1117/12.2267906

    Article  Google Scholar 

  22. Morgan, S.P.: General solution of the Luneburg lens problem. J. Appl. Phys. 29, 1358–1368 (1958). https://doi.org/10.1063/1.1723441

    Article  MathSciNet  MATH  Google Scholar 

  23. Shevchenko, V.V.: Smooth Transitions in Open Waveguides. Nauka, Moscow (1969). (in Russian)

    Google Scholar 

  24. Ivanov, A.A., Shevchenko, V.V.: A planar transversal junction of two planar waveguides. J. Commun. Technol. Electron. 54(1), 63–72 (2009). https://doi.org/10.1134/S1064226909010057

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Konstantin Lovetskiy for providing numerical data of the designed Luneburg lens, based on which all numerical calculations were carried out. The authors are grateful to Leonid Sevastianov for useful discussions and assistance provided in writing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy V. Divakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Divakov, D.V., Tiutiunnik, A.A., Sevastianov, A.L. (2020). Symbolic-Numeric Study of Geometric Properties of Adiabatic Waveguide Modes. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics