Skip to main content

Intrinsic Complexity for Constructing Zero-Dimensional Gröbner Bases

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12291))

Abstract

In this paper, we give a thorough revision of Lakshman’s paper by fixing some serious flaws in his approach. Furthermore, following this analysis, an intrinsic complexity bound for the construction of zero-dimensional Gröbner bases is given. Our complexity bound is in terms of the degree of the input ideal as well as the degrees of its generators. Finally, as an application of the presented method, we exhibit and analyze a (Monte Carlo) probabilistic algorithm to compute the degree of an equidimensional ideal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    That is all isolated primes of \({\mathfrak {a}}\) share the same dimension. Note that, in general, an equidimensional is not unmixed. A proper ideal is said to be unmixed if its dimension is equal to the dimension of every associated prime of the ideal.

References

  1. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. In cooperation with Heinz Kredel. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-0913-3

    Book  MATH  Google Scholar 

  2. Belabas, K., van Hoeij, M., Klüners, J., Steel, A.: Factoring polynomials over global fields. J. Théor. Nombres Bordx. 21(1), 15–39 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bost, J.B., Gillet, H., Soulé, C.: Un analogue arithmétique du théorème de Bézout. C. R. Acad. Sci. Paris Sér. I 312(11), 845–848 (1991)

    Google Scholar 

  4. Brownawell, W.D., Masser, D.W.: Multiplicity estimates for analytic functions. II. Duke Math. J. 47, 273–295 (1980)

    Article  MathSciNet  Google Scholar 

  5. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: an algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Translation from the German. J. Symb. Comput. 41(3–4), 475–511 (2006). https://doi.org/10.1016/j.jsc.2005.09.007

  6. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 4th edn. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

  7. Dickenstein, A., Fitchas, N., Giusti, M., Sessa, C.: The membership problem for unmixed polynomial ideals is solvable in single exponential time. Discrete Appl. Math. 33(1–3), 73–94 (1991)

    Article  MathSciNet  Google Scholar 

  8. Durvye, C.: Algorithmes pour la décomposition primaire des idéaux polynomiaux de dimension nulle donnés en évaluation. Ph.D. thesis, University of Versailles-St Quentin en Yvelines (2008)

    Google Scholar 

  9. Durvye, C.: Evaluation techniques for zero-dimensional primary decomposition. J. Symb. Comput. 44(9), 1089–1113 (2009)

    Article  MathSciNet  Google Scholar 

  10. Durvye, C., Lecerf, G.: A concise proof of the Kronecker polynomial system solver from scratch. Expo. Math. 26(2), 101–139 (2008)

    Article  MathSciNet  Google Scholar 

  11. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)

    Article  Google Scholar 

  12. Fernández, M., Pardo, L.M.: An arithmetic Poisson formula for the multi-variate resultant. J. Complexity 29(5), 323–350 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gianni, P., Mora, T.: Algebrric solution of systems of polynomirl equations using Groebher bases. In: Huguet, L., Poli, A. (eds.) AAECC 1987. LNCS, vol. 356, pp. 247–257. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51082-6_83

    Chapter  Google Scholar 

  14. Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system solving. J. Complexity 17(1), 154–211 (2001)

    Article  MathSciNet  Google Scholar 

  15. Hashemi, A., Heintz, J., Pardo, L.M., Solernó, P.: On Bézout inequalities for non-homogeneous polynomial ideals. arXiv:1701.04341 (2017)

  16. Heintz, J., Schnorr, C.P.: Testing polynomials which are easy to compute. In: International Symposium on Logic and Algorithmic, Zürich 1980, Monographs of L’Enseignement Mathematique, vol. 30, pp. 237–254 (1982)

    Google Scholar 

  17. Heintz, J.: Definability and fast quantifier elimination in algebraically closed fields. Theor. Comput. Sci. 24, 239–277 (1983)

    Article  MathSciNet  Google Scholar 

  18. Kemper, G.: A Course in Commutative Algebra, vol. 256. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-03545-6

    Book  MATH  Google Scholar 

  19. Lakshman, Y.N.: A single exponential bound on the complexity of computing Gröbner bases of zero dimensional ideals. In: Mora, T., Traverso, C. (eds.) Effective Methods in Algebraic Geometry. Progress in Mathematics, vol. 94, pp. 227–234. Birkhäuser, Boston (1991). https://doi.org/10.1007/978-1-4612-0441-1_15

    Chapter  Google Scholar 

  20. Lakshman, Y.N., Lazard, D.: On the complexity of zero-dimensional algebraic systems. In: Mora, T., Traverso, C. (eds.) Effective Methods in Algebraic Geometry. Progress in Mathematics, vol. 94, pp. 217–225. Birkhäuser, Boston (1991)

    Chapter  Google Scholar 

  21. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-12868-9_99

    Chapter  Google Scholar 

  22. Lazard, D.: Résolution des systèmes d’équations algébriques. Theor. Comput. Sci. 15, 77–110 (1981). https://doi.org/10.1016/0304-3975(81)90064-5

    Article  MATH  Google Scholar 

  23. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC 2014, pp. 296–303. Association for Computing Machinery (ACM), New York (2014)

    Google Scholar 

  24. Lecerf, G.: Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers. J. Complexity 19(4), 564–596 (2003)

    Article  MathSciNet  Google Scholar 

  25. Lelong, P.: Mesure de Mahler et calcul de constantes universelles pour les polynômes de \(n\) variables. Math. Ann. 299(4), 673–695 (1994)

    Article  MathSciNet  Google Scholar 

  26. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math. 46, 305–329 (1982). https://doi.org/10.1016/0001-8708(82)90048-2

    Article  MathSciNet  MATH  Google Scholar 

  27. McKinnon, D.: An arithmetic analogue of Bezout’s theorem. Compos. Math. 126(2), 147–155 (2001)

    Article  MathSciNet  Google Scholar 

  28. Pardo, L.M., Pardo, M.: On the zeta Mahler measure function of the Jacobian determinant, condition numbers and the height of the generic discriminant. Appl. Algebra Eng. Commun. Comput. 27(4), 303–358 (2016). https://doi.org/10.1007/s00200-016-0284-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Philippon, P.: Critères pour l’indépendance algébrique. Publ. Math. Inst. Hautes Étud. Sci. 64, 5–52 (1986)

    Article  Google Scholar 

  30. Philippon, P.: Sur des hauteurs alternatives. I. (On alternative heights. I). Math. Ann. 289(2), 255–283 (1991)

    Google Scholar 

  31. Philippon, P.: Sur des hauteurs alternatives. II. (On alternative heights. II). Ann. Inst. Fourier 44(4), 1043–1065 (1994)

    Google Scholar 

  32. Philippon, P.: Sur des hauteurs alternatives. III. J. Math. Pures Appl. (9) 74(4), 345–365 (1995)

    Google Scholar 

  33. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27, 701–717 (1980)

    Article  MathSciNet  Google Scholar 

  34. Hoeven, J.: On the complexity of multivariate polynomial division. In: Kotsireas, I.S., Martínez-Moro, E. (eds.) ACA 2015. SPMS, vol. 198, pp. 447–458. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56932-1_28

    Chapter  MATH  Google Scholar 

  35. Van der Waerden, B.L.: Algebra. Volume II. Based in part on lectures by. E. Artin and E. Noether. Transl. from the German 5th ed. by John R. Schulenberger. Springer, New York (1991)

    Google Scholar 

  36. Vogel, W.: Lectures on results on Bezout’s theorem. Notes by D. P. Patil. Lectures on Mathematics and Physics. Mathematics, 74. Tata Institute of Fundamental Research. Springer, Berlin, ix, 132 p. (1984)

    Google Scholar 

  37. von zur Gathen, J., Panario, D.: Factoring polynomials over finite fields: a survey. J. Symb. Comput. 31(1–2), 3–17 (2001)

    Google Scholar 

  38. Zariski, O., Samuel, P.: Commutative algebra. Vol. II. The University Series in Higher Mathematics. Princeton, N.J.-Toronto-London-New York: D. Van Nostrand Company, Inc. x, 414 p. (1960)

    Google Scholar 

  39. Zippel, R.: Interpolating polynomials from their values. J. Symb. Comput. 9(3), 375–403 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research was partially supported by the following Iranian, Argentinian and Spanish Grants:

– IPM Grant No. 98550413 (Amir Hashemi)

– UBACyT 20020170100309BA and PICT-2014-3260 (Joos Heintz)

– Spanish Grant MTM2014-55262-P (Luis M. Pardo)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hashemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hashemi, A., Heintz, J., Pardo, L.M., Solernó, P. (2020). Intrinsic Complexity for Constructing Zero-Dimensional Gröbner Bases. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics