Skip to main content

Analytical Computations in Studying Translational-Rotational Motion of a Non-stationary Triaxial Body in the Central Gravitational Field

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Abstract

The translational-rotational motion of a non-stationary triaxial body with constant dynamic shape in a non-stationary Newtonian central gravitational field is considered. Differential equations determining translational motion of the triaxial body around a spherical body and its rotation about the center of mass are obtained in terms of the osculating Delaunay–Andoyer elements. The force function is expanded in power series in terms of the Delaunay–Andoyer elements up to the second harmonic element inclusive. Averaging the equations of motion over the “fast” variables, we obtain the evolution equations of the translational-rotational motion of the non-stationary triaxial body which may be integrated numerically for any given laws of the masses and principal moments of inertia variation. All the relevant symbolic calculations are performed with the aid of the computer algebra system Wolfram Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duboshin, G.N.: Celestial Mechanics. Basic Problems and Methods, 2nd edn. Nauka, Moscow (1968)

    MATH  Google Scholar 

  2. Roy, A.E.: Orbital Motion. Hilger, Bristol (1978)

    MATH  Google Scholar 

  3. Beletskii, V.V.: Attitude Motion of Satellite in a Gravitational Field. MGU Press, Moscow (1975)

    Google Scholar 

  4. Zhuravlev, S.G., Petrutskii, A.A.: Current state of the problem of translational-rotational motion of three rigid bodies. Sov. Astron. 34(3), 299–304 (1990)

    Google Scholar 

  5. Maciejewski, A.J.: A simple model of the rotational motion of a rigid satellite around an oblate planet. Acta Astron. 47, 387–398 (1997)

    Google Scholar 

  6. Krasilnikov, P.S.: Rotational Motion of a Rigid Body about Center of Mass in the Restricted Three-Body Problem. MAI Press, Moscow (2018)

    Google Scholar 

  7. Eddington, A.S.: On the relation between the masses and luminosities of the stars. Mon. Not. Roy. Astronimical Soc. 84, 308–332 (1923)

    Article  Google Scholar 

  8. Jeans, J.H.: The effect of varying mass on a binary system. Mon. Not. R. Astronimical Soc. 85, 912–914 (1925)

    Article  Google Scholar 

  9. Omarov, T.B.: Non-Stationary Dynamical Problems in Astronomy. Nova Science Publ, New York (2002)

    Google Scholar 

  10. Bekov, A.A., Omarov, T.B.: The theory of orbits in non-stationary stellar systems. Astronomical Astrophys. Trans. 22(2), 145–153 (2003)

    Article  Google Scholar 

  11. Minglibayev, M.Zh.: Dynamics of gravitating bodies of variable masses and sizes. Lambert Acad. (2012)

    Google Scholar 

  12. Eggleton, P.: Evolutionary Processes in Binary and Multiple Stars. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  13. Hadjidemetriou, J.D.: Binary systems with decreasing mass. Zeitschrift für Astrophysik 63, 116–130 (1966)

    MathSciNet  Google Scholar 

  14. Deprit, A., Miller, B., Williams, C.A.: Gylden systems: rotation of pericenters. Astrophys. Space Sci. 159, 239–270 (1989)

    Article  MathSciNet  Google Scholar 

  15. Luk’yanov, L.G.: Conservative two-body problem with variable masses. Astron. Lett. 31(8), 563–568 (2005)

    Article  Google Scholar 

  16. Prokopenya, A.N., Minglibayev, M.Z., Mayemerova, G.M.: Symbolic computations in studying the problem of three bodies with variable masses. Program. Comput. Softw. 40(2), 79–85 (2014)

    Article  MathSciNet  Google Scholar 

  17. Prokopenya, A.N., Minglibayev, M.Z., Beketauov, B.A.: On integrability of evolutionary equations in the restricted three-body problem with variable masses. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 373–387. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10515-4_27

    Chapter  MATH  Google Scholar 

  18. Prokopenya, A.N., Minglibayev, M.Z., Beketauov, B.A.: Secular perturbations of quasi-elliptic orbits in the restricted three-body problem with variable masses. Int. J. Non-Linear Mech. 73, 58–63 (2015)

    Article  Google Scholar 

  19. Prokopenya, A.N., Minglibayev, M.Z., Mayemerova, G.M., Imanova, Z.U.: Investigation of the restricted problem of three bodies of variable masses using computer algebra. Program. Comput. Softw. 43(5), 289–293 (2017). https://doi.org/10.1134/S0361768817050061

    Article  MathSciNet  MATH  Google Scholar 

  20. Baisbayeva, O., Minglibayev, M., Prokopenya, A.: Analytical calculations of secular perturbations of translational-rotational motion of a non-stationary triaxial body in the central field of attraction. http://aca2019.etsmtl.ca/program/conference-booklet/. Accessed 10 Jan 2020

  21. Prokopenya, A.N., Minglibayev, M.Z., Shomshekova, S.A.: Application of computer algebra in the study of the two-planet problem of three bodies with variable masses. Programm. Comput. Softw. 45(2), 73–80 (2019)

    Article  MathSciNet  Google Scholar 

  22. Berkovič, L.M.: Gylden-Meščerski problem. Celest. Mech. 24, 407–429 (1981)

    Article  Google Scholar 

  23. Wolfram, S.: An Elementary Introduction to the Wolfram Language, 2nd edn. Champaign, IL, USA, Wolfram Media (2017)

    Google Scholar 

  24. Markeev, A.P.: Theor. Mech. Regular and Chaotic Dynamics, Moscow-Izhevsk (2007). [in Russian]

    Google Scholar 

  25. Boccaletti, D., Pucacco, G.: Theory of Orbits. Vol. 2: Perturbative and Geometrical Methods. Springer-Verlag, Berlin-Heidelberg (2002)

    Google Scholar 

  26. Kinoshita, H.: Theory of the rotation of the rigid Earth. Celest. Mech. 15, 277–326 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Prokopenya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prokopenya, A., Minglibayev, M., Baisbayeva, O. (2020). Analytical Computations in Studying Translational-Rotational Motion of a Non-stationary Triaxial Body in the Central Gravitational Field. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics