Abstract
Multiplication of univariate dense polynomials with long integer unbalanced (having different lengths) coefficients is considered. By reducing the problem to the product of bivariate polynomials with balanced coefficients, Toom–Cook approach is shown, pointing out some optimizations in order to reduce the computational cost. As a byproduct, univariate sparse Toom–Cook is also sketched. Lastly, some experimental results concerning performance comparisons are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The same idea can, of course, be applied to the general case \(a(x^r)b(x^r)\).
References
Bodrato, M.: Towards optimal toom-cook multiplication for univariate and multivariate polynomials in characteristic 2 and 0. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 116–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73074-3_10
Bodrato, M.: High degree Toom’n’half for balanced and unbalanced multiplication. In: Antelo, E., Hough, D., Ienne, P. (eds.) 20th IEEE Symposium on Computer Arithmetic, ARITH 2011, Tübingen, Germany, 25–27 July 2011, pp. 15–22. IEEE Computer Society, Washington D.C., USA (2011)
Bodrato, M., Zanoni, A.: Integer and polynomial multiplication: towards optimal Toom-Cook matrices. In: Wang, D. (ed.) Symbolic and Algebraic Computation, International Symposium, ISSAC 2007, Waterloo, Ontario, Canada, July 28 - 1 August 2007, Proceedings, pp. 17–24. ACM, New York, USA (2007)
Bodrato, M., Zanoni, A.: Karatsuba and Toom-Cook methods for multivariate polynomials. In: Breaz, D., Breaz, N., Ularu, N. (eds.) Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics ICTAMI 2011, pp. 11–60. Aeternitas Publishing House, Alba Iulia, Romania (July 2011)
Chen, C., Covanov, S., Mansouri, F., Maza, M.M., Xie, N., Xie, Y.: Parallel integer polynomial multiplication. In: Davenport, J.H., et al. (eds.) 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2016, Timisoara, Romania, 24–27 September 2016, pp. 72–80. IEEE Computer Society, Washington D.C., USA (2016)
Cook, S.A.: On the minimum computation time of functions. Ph.D. thesis, Harvard University (1966)
De, A., Kurur, P.P., Saha, C., Saptharishi, R.: Fast integer multiplication using modular arithmetic. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 499–506. STOC 2008. Association for Computing Machinery, New York, USA (2008)
Fateman, R.: Can you save time in multiplying polynomials by encoding them as integers? / revised 2010 (2010). https://people.eecs.berkeley.edu/~fateman/papers/polysbyGMP.pdf
Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)
Hart, W.B.: Fast library for number theory: an introduction. In: Proceedings of the Third International Congress Conference on Mathematical Software, pp. 88–91. ICMS 2010. Springer, Berlin, Heidelberg (2010)
Harvey, D., van der Hoeven, J.: Integer multiplication in time \({O}(n \log n)\) March 2019. https://hal.archives-ouvertes.fr/hal-02070778/document
Harvey, D., van der Hoeven, J., Lecerf, G.: Even faster integer multiplication. J. Complexity 36, 1–30 (2016)
van der Hoeven, J., Lecerf, G.: On the complexity of multivariate blockwise polynomial multiplication. In: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, pp. 211–218. ISSAC 2012, ACM, New York, USA (2012)
Karatsuba, A.A., Ofman, Y.: Multiplication of multidigit numbers on automata. Soviet Phys. Doklady 7, 595–596 (1963)
Kronecker, L.: Grundzüge einer arithmetischen theorie der algebraischen Grössen. J. für die reine und angewandte Mathematik 92, 1–122 (1882)
Schönhage, A., Strassen, V.: Schnelle multiplikation großer zahlen. Computing 7(3–4), 281–292 (1971)
The GMP team: Bodrato, M., Glisse, M., Granlund, T., Möller, N., et al.: GNU MP: The GNU Multiple Precision Arithmetic Library, 6.2.0 edn. (2020). https://gmplib.org
The PARI Group, Univ. Bordeaux: PARI/GP version 2.11.2 (2019). http://pari.math.u-bordeaux.fr/
Toom, A.L.: The complexity of a scheme of functional elements realizing the multiplication of integers. Soviet Math. Doklady 3, 714–716 (1963)
Zanoni, A.: Iterative Toom-Cook methods for very unbalanced long integer multiplication. In: Koepf, W. (ed.) Symbolic and Algebraic Computation, International Symposium, ISSAC 2010, Munich, Germany, July 25–28, 2010, Proceedings, pp. 319–323. ACM, New York, USA (2010)
Acknowledgments
The authors would like to deeply thank all the referees for their precious comments that helped to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bodrato, M., Zanoni, A. (2020). Univariate Polynomials with Long Unbalanced Coefficients as Bivariate Balanced Ones: A Toom–Cook Multiplication Approach. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-60026-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60025-9
Online ISBN: 978-3-030-60026-6
eBook Packages: Computer ScienceComputer Science (R0)