Abstract
Modern cloud robotic applications face new challenges in managing today’s highly distributed and heterogeneous environment. For example, the application programmers must make numerous systematical decisions between the local robot and the cloud server, such as computation deployment, data sharing and function integration.
In this paper, we propose RobotCenter, a composable cloud robotics operating system for developing and deploying robotics applications. RobotCenter provides three key functionalities: runtime management, data management and programming abstraction. With these functionalities, RobotCenter enables application programmers to easily develop powerful and diverse robotics applications. Meanwhile, it can efficiently execute these applications with high performance and low energy consumption. We implement a prototype of the design above and use an example of AGV/UAV cooperative transport application to illustrate the feasibility of RobotCenter. In the experiment, we reduce the total energy consumption and mission completion time up to 41.2% and 51.5%, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The experiment video can be found in https://youtu.be/KeYyS6lZxo0.
References
Apache Hadoop project. http://hadoop.apache.org/ (2009)
Open source robot operating system. http://www.ros.org/ (2009)
Roboearth project. http://roboearth.ethz.ch/ (2009)
Web ontology language. https://www.w3.org/OWL/ (2013)
The robo briain project. http://robobrain.me/ (2015)
Mit technology review: Robots that teach each other. https://www.technologyreview.com/s/600768/10-breakthrough-technologies-2016-robots-that-teach-each-other/ (2016)
Microsoft farmbeats. https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/ (2017)
Amazon aws iot greengrass. https://aws.amazon.com/greengrass/ (2018)
Amazon aws robomaker. https://aws.amazon.com/robomaker/ (2018)
Open source computer vision library. https://opencv.org/ (2018)
The point cloud library. http://pointclouds.org/ (2018)
Dji flightgub. https://www.dji.com/flighthub/ (2019)
Ros navigation stack. http://wiki.ros.org/navigation/ (2019)
Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Operating Systems Design and Implementation (OSDI) (2016)
Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Bozcuoğlu, A.K., Bartels, G.: Know Rob 2.0–a 2nd generation knowledge processing framework for cognition-enabled robotic agents. In: International Conference on Robotics and Automation (ICRA) (2018)
Boroujerdian, B., Genc, H., Krishnan, S., Cui, W., Faust, A., Reddi, V.J.: Mavbench: micro aerial vehicle benchmarking. In: MICRO (2018)
Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48005-6_7
Chen, X.: Decentralized computation offloading game for mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 26(4), 974–983 (2015)
Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution between mobile device and cloud. In: European Conference on Computer Systems (EuroSys) (2011)
Collett, T.H.J., MacDonald, B.A., Gerkey, B.: Player 2.0: toward a practical robot programming framework. In: Proceedings of the Australasian Conference on Robotics and Automation (ACRA) (2005)
Cuervo, E., et al.: Maui: making smartphones last longer with code offload. In: International Conference on Mobile Systems, Applications, and Services (MobiSys) (2010)
D’Andrea, R.: Guest editorial: a revolution in the warehouse: a retrospective on kiva systems and the grand challenges ahead. IEEE Trans. Autom. Sci. Eng. (T-ASE) 9(4), 638–639 (2012)
Elkady, A.Y., Sobh, T.M.: Robotics middleware: a comprehensive literature survey and attribute-based bibliography. J. Robot. (2012)
Elkady, A.Y., Sobh, T.M.: A user-centric data protection method for cloud storage based on invertible DWT. IEEE Trans. Cloud Comput. pp. 1–1 (2017)
Elkady, A.Y., Sobh, T.M.: A user-centric data protection method for cloud storage based on invertible DWT. IEEE Trans. Cloud Comput. pp. 1–1 (2019)
Guo, S., Xiao, B., Yang, Y., Yang, Y.: Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In: IEEE International Conference on Computer Communications (INFOCOM) (2016)
Hu, G., Tay, W.P., Wen, Y.: Cloud robotics: architecture, challenges and applications. IEEE Network 26(3), 21–28 (2012)
Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Computer Vision and Pattern Recognition (CVPR) (2017)
Janssen, R., van de Molengraft, R., Bruyninckx, H., Steinbuch, M.: Cloud based centralized task control for human domain multi-robot operations. Intel. Serv. Robot. 9(1), 63–77 (2015). https://doi.org/10.1007/s11370-015-0185-y
Kamei, K., Nishio, S., Hagita, N., Sato, M.: Cloud networked robotics. IEEE Network 12(2), 432–443 (2012)
Kehoe, B., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. (T-ASE) 12(2), 398–409 (2015)
Kehoe, B., Matsukawa, A., Candido, S., Kuffner, J., Goldberg, K.: Cloud-based robot grasping with the google object recognition engine. In: International Conference on Robotics and Automation (ICRA) (2013)
Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: IEEE International Conference on Computer Communications (INFOCOM) (2012)
Liu, W., et al.: SSD: single shot multiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Mahler, J., et al.: Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. In: Robotics: Science and Systems (RSS) (2017)
Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D.V., Goldberg, K.: Dex-Net 3.0: computing robust vacuum suction grasp targets in point clouds using a new analytic model and deep learning. In: International Conference on Robotics and Automation (ICRA) (2018)
Mohanarajah, G., Hunziker, D., D’Andrea, R., Waibel, M.: Rapyuta: a cloud robotics platform. IEEE Trans. Autom. Sci. Eng. (T-ASE) 12(2), 481–493 (2015)
Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE Internet Comput. 16(1), 69–73 (2012)
Riazuelo, L., Civera, J., Montiel, J.M.M.: C2tam: a cloud framework for cooperative tracking and mapping. In: Robotics and Autonomous Systems (RSS) (2014)
Riazuelo, L., et al.: Roboearth semantic mapping: a cloud enabled knowledge-based approach. IEEE Trans. Autom. Sci. Eng. (T-ASE) 10(3), 643–651 (2015)
Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenets: efficient convolutional neural networks for mobile vision applications. In: CoRR abs/1704.04861 (2017)
Schneider, T., et al.: Maplab: an open framework for research in visual-inertial mapping and localization. IEEE Rob. Autom. Lett. 3(3), 1425–1428 (2018)
Shao, Z., et al.: Security protection and checking for embedded system integration against buffer overflow attacks via hardware/software. IEEE Trans. Comput. 55(4), 443–453 (2006)
Stoica, I., et al.: A Berkeley view of systems challenges for AI. In: CoRR abs/1712.05855 (2017)
Tenorth, M., Perzylo, A.C., Lafrenz, R., Beetz, M.: Representation and exchange of knowledge about actions, objects, and environments in the RoboEarth framework. IEEE Trans. Autom. Sci. Eng. (T-ASE) 10(3), 643–651 (2013)
Vasisht, D., et al.: A cloud robot system using the dexterity network and Berkeley robotics and automation as a service (Brass). In: USENIX Symposium on Networked Systems Design and Implementation (NSDI) (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, Y., Zhang, T., Wang, S., Bao, Y. (2020). A Software Stack for Composable Cloud Robotics System. In: Qiu, M. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2020. Lecture Notes in Computer Science(), vol 12453. Springer, Cham. https://doi.org/10.1007/978-3-030-60239-0_48
Download citation
DOI: https://doi.org/10.1007/978-3-030-60239-0_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60238-3
Online ISBN: 978-3-030-60239-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)