Skip to main content

A Software Stack for Composable Cloud Robotics System

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12453))

  • 2009 Accesses

Abstract

Modern cloud robotic applications face new challenges in managing today’s highly distributed and heterogeneous environment. For example, the application programmers must make numerous systematical decisions between the local robot and the cloud server, such as computation deployment, data sharing and function integration.

In this paper, we propose RobotCenter, a composable cloud robotics operating system for developing and deploying robotics applications. RobotCenter provides three key functionalities: runtime management, data management and programming abstraction. With these functionalities, RobotCenter enables application programmers to easily develop powerful and diverse robotics applications. Meanwhile, it can efficiently execute these applications with high performance and low energy consumption. We implement a prototype of the design above and use an example of AGV/UAV cooperative transport application to illustrate the feasibility of RobotCenter. In the experiment, we reduce the total energy consumption and mission completion time up to 41.2% and 51.5%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The experiment video can be found in https://youtu.be/KeYyS6lZxo0.

References

  1. Apache Hadoop project. http://hadoop.apache.org/ (2009)

  2. Open source robot operating system. http://www.ros.org/ (2009)

  3. Roboearth project. http://roboearth.ethz.ch/ (2009)

  4. Web ontology language. https://www.w3.org/OWL/ (2013)

  5. The robo briain project. http://robobrain.me/ (2015)

  6. Mit technology review: Robots that teach each other. https://www.technologyreview.com/s/600768/10-breakthrough-technologies-2016-robots-that-teach-each-other/ (2016)

  7. Microsoft farmbeats. https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/ (2017)

  8. Amazon aws iot greengrass. https://aws.amazon.com/greengrass/ (2018)

  9. Amazon aws robomaker. https://aws.amazon.com/robomaker/ (2018)

  10. Open source computer vision library. https://opencv.org/ (2018)

  11. The point cloud library. http://pointclouds.org/ (2018)

  12. Dji flightgub. https://www.dji.com/flighthub/ (2019)

  13. Ros navigation stack. http://wiki.ros.org/navigation/ (2019)

  14. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Operating Systems Design and Implementation (OSDI) (2016)

    Google Scholar 

  15. Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Bozcuoğlu, A.K., Bartels, G.: Know Rob 2.0–a 2nd generation knowledge processing framework for cognition-enabled robotic agents. In: International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  16. Boroujerdian, B., Genc, H., Krishnan, S., Cui, W., Faust, A., Reddi, V.J.: Mavbench: micro aerial vehicle benchmarking. In: MICRO (2018)

    Google Scholar 

  17. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48005-6_7

    Chapter  Google Scholar 

  18. Chen, X.: Decentralized computation offloading game for mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 26(4), 974–983 (2015)

    Article  Google Scholar 

  19. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution between mobile device and cloud. In: European Conference on Computer Systems (EuroSys) (2011)

    Google Scholar 

  20. Collett, T.H.J., MacDonald, B.A., Gerkey, B.: Player 2.0: toward a practical robot programming framework. In: Proceedings of the Australasian Conference on Robotics and Automation (ACRA) (2005)

    Google Scholar 

  21. Cuervo, E., et al.: Maui: making smartphones last longer with code offload. In: International Conference on Mobile Systems, Applications, and Services (MobiSys) (2010)

    Google Scholar 

  22. D’Andrea, R.: Guest editorial: a revolution in the warehouse: a retrospective on kiva systems and the grand challenges ahead. IEEE Trans. Autom. Sci. Eng. (T-ASE) 9(4), 638–639 (2012)

    Article  Google Scholar 

  23. Elkady, A.Y., Sobh, T.M.: Robotics middleware: a comprehensive literature survey and attribute-based bibliography. J. Robot. (2012)

    Google Scholar 

  24. Elkady, A.Y., Sobh, T.M.: A user-centric data protection method for cloud storage based on invertible DWT. IEEE Trans. Cloud Comput. pp. 1–1 (2017)

    Google Scholar 

  25. Elkady, A.Y., Sobh, T.M.: A user-centric data protection method for cloud storage based on invertible DWT. IEEE Trans. Cloud Comput. pp. 1–1 (2019)

    Google Scholar 

  26. Guo, S., Xiao, B., Yang, Y., Yang, Y.: Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In: IEEE International Conference on Computer Communications (INFOCOM) (2016)

    Google Scholar 

  27. Hu, G., Tay, W.P., Wen, Y.: Cloud robotics: architecture, challenges and applications. IEEE Network 26(3), 21–28 (2012)

    Article  Google Scholar 

  28. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  29. Janssen, R., van de Molengraft, R., Bruyninckx, H., Steinbuch, M.: Cloud based centralized task control for human domain multi-robot operations. Intel. Serv. Robot. 9(1), 63–77 (2015). https://doi.org/10.1007/s11370-015-0185-y

    Article  Google Scholar 

  30. Kamei, K., Nishio, S., Hagita, N., Sato, M.: Cloud networked robotics. IEEE Network 12(2), 432–443 (2012)

    Google Scholar 

  31. Kehoe, B., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. (T-ASE) 12(2), 398–409 (2015)

    Article  Google Scholar 

  32. Kehoe, B., Matsukawa, A., Candido, S., Kuffner, J., Goldberg, K.: Cloud-based robot grasping with the google object recognition engine. In: International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  33. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: IEEE International Conference on Computer Communications (INFOCOM) (2012)

    Google Scholar 

  34. Liu, W., et al.: SSD: single shot multiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  35. Mahler, J., et al.: Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. In: Robotics: Science and Systems (RSS) (2017)

    Google Scholar 

  36. Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D.V., Goldberg, K.: Dex-Net 3.0: computing robust vacuum suction grasp targets in point clouds using a new analytic model and deep learning. In: International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  37. Mohanarajah, G., Hunziker, D., D’Andrea, R., Waibel, M.: Rapyuta: a cloud robotics platform. IEEE Trans. Autom. Sci. Eng. (T-ASE) 12(2), 481–493 (2015)

    Article  Google Scholar 

  38. Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE Internet Comput. 16(1), 69–73 (2012)

    Article  MathSciNet  Google Scholar 

  39. Riazuelo, L., Civera, J., Montiel, J.M.M.: C2tam: a cloud framework for cooperative tracking and mapping. In: Robotics and Autonomous Systems (RSS) (2014)

    Google Scholar 

  40. Riazuelo, L., et al.: Roboearth semantic mapping: a cloud enabled knowledge-based approach. IEEE Trans. Autom. Sci. Eng. (T-ASE) 10(3), 643–651 (2015)

    Google Scholar 

  41. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenets: efficient convolutional neural networks for mobile vision applications. In: CoRR abs/1704.04861 (2017)

    Google Scholar 

  42. Schneider, T., et al.: Maplab: an open framework for research in visual-inertial mapping and localization. IEEE Rob. Autom. Lett. 3(3), 1425–1428 (2018)

    Google Scholar 

  43. Shao, Z., et al.: Security protection and checking for embedded system integration against buffer overflow attacks via hardware/software. IEEE Trans. Comput. 55(4), 443–453 (2006)

    Article  Google Scholar 

  44. Stoica, I., et al.: A Berkeley view of systems challenges for AI. In: CoRR abs/1712.05855 (2017)

    Google Scholar 

  45. Tenorth, M., Perzylo, A.C., Lafrenz, R., Beetz, M.: Representation and exchange of knowledge about actions, objects, and environments in the RoboEarth framework. IEEE Trans. Autom. Sci. Eng. (T-ASE) 10(3), 643–651 (2013)

    Article  Google Scholar 

  46. Vasisht, D., et al.: A cloud robot system using the dexterity network and Berkeley robotics and automation as a service (Brass). In: USENIX Symposium on Networked Systems Design and Implementation (NSDI) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Zhang, T., Wang, S., Bao, Y. (2020). A Software Stack for Composable Cloud Robotics System. In: Qiu, M. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2020. Lecture Notes in Computer Science(), vol 12453. Springer, Cham. https://doi.org/10.1007/978-3-030-60239-0_48

Download citation

Publish with us

Policies and ethics