Skip to main content

FleetChain: A Secure Scalable and Responsive Blockchain Achieving Optimal Sharding

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12454))

Abstract

Sharding blockchains are promising in improving transaction throughput and achieving network scalability. Intra-shard consensus and cross-shard communication are two essential parts for almost every kind of sharding blockchain. However, some security problems still exist in current sharding solutions such as replay attacks, and there is still room for improvement in efficiency.

In this paper, we propose FleetChain, a secure and scalable sharding blockchain. First, we make modification of the original BLS multi-signature scheme to a robust (tu)-multi-signature protocol supporting further aggregation, which could shorten vote messages. Second, a leader-stable fast Byzantine fault tolerance (\(\mathtt {FBFT}\)) protocol is designed for efficient intra-shard consensus, combining pipeline technology and multi-signature. \(\mathtt {FBFT}\) is specially designed for sharding blockchains, with the ability to process different types of proposals that might be transactions or transaction inputs. Third, a responsive sharding transaction processing (\(\mathtt {RSTP}\)) protocol is given, which greatly improves the processing efficiency of cross-shard transactions by using multi-signature aggregation. FleetChain employs a star network in both intra-shard and cross-shard communication, achieving responsiveness when confirming transactions. In addition, FleetChain achieves optimal sharding with a scaling factor of \(O(n/\log n)\) where n denotes the total number of participating nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  2. Bano, S., Al-Bassam, M., Danezis, G.: The road to scalable blockchain designs. Login 42(4), 31–36 (2017)

    Google Scholar 

  3. Conti, M., Kumar, E.S., Lal, C., Ruj, S.: A survey on security and privacy issues of bitcoin. IEEE Commun. Surv. Tutor. 20(4), 3416–3452 (2018)

    Article  Google Scholar 

  4. Bonneau, J.: Why buy when you can rent? Bribery attacks on bitcoin-style consensus. In: FC 2016, pp. 19–26 (2016)

    Google Scholar 

  5. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network. In: USENIX Security 2015, pp. 129–144 (2015)

    Google Scholar 

  6. Eyal, I.: The miner’s dilemma. In: SP 2015, pp. 89–103 (2015)

    Google Scholar 

  7. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish mining and combining with an eclipse attack. In: EuroS&P 2016, pp. 305–320 (2016)

    Google Scholar 

  8. Liu, Y., Hei, Y., Xu, T., Liu, J.: An evaluation of uncle block mechanism effect on Ethereum selfish and stubborn mining combined with an eclipse attack. IEEE Access 8, 17489–17499 (2020)

    Article  Google Scholar 

  9. Bag, S., Ruj, S., Sakurai, K.: Bitcoin block withholding attack: analysis and mitigation. IEEE Trans. Inf. Forensics Secur. 12(8), 1967–1978 (2017)

    Article  Google Scholar 

  10. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  11. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_22

    Chapter  MATH  Google Scholar 

  12. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016). https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf

  13. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment hubs over cryptocurrencies. In: SP 2017, pp. 327–344 (2017)

    Google Scholar 

  14. Liu, Y., Liu, J., Zhang, Z., Xu, T., Yu, H.: Overview on consensus mechanism of blockchain technology. J. Cryptologic Res. 6(4), 395–432 (2019)

    Google Scholar 

  15. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Omniledger: a secure, scale-out, decentralized ledger via sharding. In: SP 2018, pp. 583–598 (2018)

    Google Scholar 

  16. Sonnino, A., Bano, S., Al-Bassam, M., Danezis, G.: Replay attacks and defenses against cross-shard consensus in sharded distributed ledgers (2019). CoRR abs/1901.11218

    Google Scholar 

  17. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: a sharded smart contracts platform. In: NDSS 2018, pp. 18–21 (2018)

    Google Scholar 

  18. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

    Chapter  Google Scholar 

  19. Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Divide and scale: formalization of distributed ledger sharding protocols (2019). CoRR abs/1910.10434

    Google Scholar 

  20. Wang, J., Wang, H.: Monoxide: scale out blockchains with asynchronous consensus zones. In: NSDI 2019, pp. 95–112 (2019)

    Google Scholar 

  21. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_24

    Chapter  Google Scholar 

  22. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_13

    Chapter  Google Scholar 

  23. Liu, Y., Liu, J., Zhang, Z., Yu, H.: A fair selection protocol for committee-based permissionless blockchains. Comput. Secur. 91, 101718 (2020)

    Article  Google Scholar 

  24. Zamyatin, A., et al.: SoK: communication across distributed ledgers. IACR Cryptology ePrint Archive 2019, 1128 (2019)

    Google Scholar 

  25. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI 1999, pp. 173–186 (1999)

    Google Scholar 

  26. Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham, I.: HotStuff: BFT consensus with linearity and responsiveness. In: PODC 2019, pp. 347–356 (2019)

    Google Scholar 

  27. Golan-Gueta, G., et al.: SBFT: a scalable and decentralized trust infrastructure. In: DSN 2019, pp. 568–580 (2019)

    Google Scholar 

  28. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for open blockchains. In: ACM SIGSAC 2016, pp. 17–30 (2016)

    Google Scholar 

  29. Kokoris-Kogias, E.: Robust and scalable consensus for sharded distributed ledgers. IACR Cryptology ePrint Archive 2019, 676 (2019)

    Google Scholar 

  30. Zamani, M., Movahedi, M., Raykova, M.: RapidChain: scaling blockchain via full sharding. In: CCS 2018, pp. 931–948 (2018)

    Google Scholar 

  31. Ren, L., Nayak, K., Abraham, I., Devadas, S.: Practical synchronous Byzantine consensus. IACR Cryptology ePrint Archive 2017, 307 (2017)

    Google Scholar 

  32. Manuskin, A., Mirkin, M., Eyal, I.: Ostraka: secure blockchain scaling by node sharding (2019). CoRR abs/1907.03331

    Google Scholar 

  33. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E., Lin, Q., Ooi, B.C.: Towards scaling blockchain systems via sharding. In: SIGMOD 2019, pp. 123–140 (2019)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Prof. Fritz Henglein and Marcos Antonio Vaz Salles for their valuable comments. This paper is supported by the National Key R&D Program of China through project 2017YFB1400702 and 2017YFB0802500, the National Cryptography Development Fund through project MMJJ20170106, the Natural Science Foundation of China through projects 61932014, 61972018, 61972019, 61932011, 61772538, 61672083, 61532021, 61472429, 91646203, 61402029, 61972017, 61972310, the foundation of Science and Technology on Information Assurance Laboratory through project 61421120305162112006, the China Scholarship Council through project 201906020015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Liu, J., Li, D., Yu, H., Wu, Q. (2020). FleetChain: A Secure Scalable and Responsive Blockchain Achieving Optimal Sharding. In: Qiu, M. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2020. Lecture Notes in Computer Science(), vol 12454. Springer, Cham. https://doi.org/10.1007/978-3-030-60248-2_28

Download citation

Publish with us

Policies and ethics