Skip to main content

Blockchain Consensus Mechanisms and Their Applications in IoT: A Literature Survey

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12454))

Abstract

With the advance of blockchain technology, blockchain has been used in many fields. As a point-to-point network with characteristics of traceability, decentralization, de-trust and so on, blockchain technology is suitable for deploying Internet of Things networks. It provides the opportunity for the prosperity of IoT networks. As a key component of blockchain, blockchain consensus mechanism is worth studying. In this paper, we systematically survey blockchain consensus mechanisms from the perspective of Internet of Things networks requirements. We first introduce the requirements of consensus mechanisms in IoT networks to help researchers understand the connection of blockchain consensus mechanisms and IoT. Then we divide the blockchain consensus mechanism into four categories, namely, consensus mechanisms for security, consensus mechanisms for scalability, consensus mechanisms for energy saving, and consensus mechanisms for performance improvement. We further analyze those blockchain consensus mechanisms and point out the potential direction of blockchain consensus designs based on our observation. The target of this paper is to provide insights for researchers into the future development of blockchain consensus mechanisms in IoT and encourage more efforts in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramachandran, P.: Powering the energy industry with the internet of things. PC Quest 46–46 (2014)

    Google Scholar 

  2. Jie, W., Yang, D., Liu, X., Yu, Z.: The key technologies and development research of Chinese light industry IoT application. In: China Conference on Wireless Sensor Networks (2013)

    Google Scholar 

  3. Lampropoulos, G., Siakas, K.V., Anastasiadis, T.: Internet of Things (IoT) in industry: contemporary application domains, innovative technologies and intelligent manufacturing (2018)

    Google Scholar 

  4. Alladi, T., Chamola, V., Parizi, R.M., Choo, K.K.R.: Blockchain applications for industry 4.0 and industrial IoT: a review. IEEE Access 7, 176935–176951 (2019)

    Article  Google Scholar 

  5. Kim, Y., Rue, S., Park, Y.: IoT convergence on finance: fintech trend analysis. Korea Inst. Inf. Technol. Mag. 13, 45–50 (2015)

    Google Scholar 

  6. Cuomo, S., Somma, V.D., Sica, F.: An application of the one-factor Hullwhite model in an IoT financial scenario. Sustain. Cities Soc. 38, 18–20 (2018)

    Article  Google Scholar 

  7. Rubing, H., Yumin, S.: Financial integrated application platform based on BeiDou and quantum security internet of things (2018)

    Google Scholar 

  8. Kishor Panda, N., Bhardwaj, S., Bharadwaj, H., Singhvi, R.: IoT based advanced medicine dispenser integrated with an interactive web application. Int. J. Eng. Technol. 7(4.10), 46–48 (2018)

    Article  Google Scholar 

  9. Neto, M.M., Coutinho, E.F., de Oliveira Moreira, L., de Souza, J.N.: Toward blockchain technology in IoT applications: an analysis for e-health applications. In: IFIPIoT (2019)

    Google Scholar 

  10. Wu, Y., Zhou, J., Li, J., Liu, J., Li, S., Bai, C.: Application of IoT-based medical diagnosis and treatment in patients with obstructive sleep apnea/hypopnea syndrome in primary hospitals: a preliminary study. Tradit. Med. Mod. Med. 1(3), 207–212 (2018)

    Article  Google Scholar 

  11. Alsunaidi, S.J., Alhaidari, F.A.: A survey of consensus algorithms for blockchain technology. In: 2019 International Conference on Computer and Information Sciences (ICCIS) (2019)

    Google Scholar 

  12. Nguyen, G.T., Kim, K.: A survey about consensus algorithms used in blockchain. J. Inf. Process. Syst. 14(1), 101–128 (2018)

    Google Scholar 

  13. Wang, W., et al.: A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access 7, 22328–22370 (2018)

    Article  Google Scholar 

  14. Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: A survey of distributed consensus protocols for blockchain networks (2019)

    Google Scholar 

  15. Cachin, C., Vukolić, M.: Blockchain consensus protocols in the wild (2017)

    Google Scholar 

  16. Liu, Y.-Z., Liu, J.-W., Zhang, Z.-Y., Xu, T.-G., Yu, H.: Overview on blockchain consensus mechanisms. J. Cryptol. Res. 6, 395–432 (2019)

    Google Scholar 

  17. Zoican, S., Vochin, M., Zoican, R., Galatchi, D.: Blockchain and consensus algorithms in internet of things. In: 2018 International Symposium on Electronics and Telecommunications (ISETC), pp. 1–4 (2018)

    Google Scholar 

  18. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169 (1998)

    Article  Google Scholar 

  19. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)

    Google Scholar 

  20. Gafni, E., Lamport, L.: Disk Paxos. Distrib. Comput. 16(1), 1–20 (2003)

    Article  MATH  Google Scholar 

  21. Lamport, L.: Fast Paxos. Distrib. Comput. 19(2), 79–103 (2006)

    Article  MATH  Google Scholar 

  22. Lamport, L.B., Massa, M.T.: Cheap Paxos (2007)

    Google Scholar 

  23. Pires, M., Ravi, S., Rodrigues, R.: Generalized Paxos made byzantine (and less complex). CoRR abs/1708.07575 (2017). http://arxiv.org/abs/1708.07575

  24. Whittaker, M., Giridharan, N., Szekeres, A., Hellerstein, J.M., Stoica, I.: Bipartisan Paxos: a modular state machine replication protocol (2020)

    Google Scholar 

  25. Vinit, K., Ajay, A.: HT-Paxos: high throughput state-machine replication protocol for large clustered data centers. Sci. World J. 2015, 1–13 (2015)

    Google Scholar 

  26. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference (2014)

    Google Scholar 

  27. Huang, D., Ma, X., Zhang, S.: Performance analysis of the raft consensus algorithm for private blockchains. IEEE Trans. Syst. Man Cybern. Syst. 50, 172–181 (2018)

    Article  Google Scholar 

  28. Copeland, C.N., Zhong, H.: Tangaroa: a Byzantine fault tolerant raft (2014)

    Google Scholar 

  29. Chubby. http://blogoscoped.com/archive/2008-07-24-n69.html

  30. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2019)

    Google Scholar 

  31. Ren, W., Hu, J., Zhu, T., Ren, Y., Choo, K.K.R.: A flexible method to defend against computationally resourceful miners in blockchain proof of work. Inf. Sci. 507, 161–171 (2020)

    Article  Google Scholar 

  32. Duong, T., Fan, L., Zhou, H.S.: 2-hop blockchain: combining proof-of-work and proof-of-stake securely (2016)

    Google Scholar 

  33. Wustrow, E., VanderSloot, B.: DDoSCoin: cryptocurrency with a malicious proof-of-work. In: Proceedings of the 10th USENIX Conference on Offensive Technologies, WOOT 2016, pp. 168–177. USENIX Association, Berkeley (2016)

    Google Scholar 

  34. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of useful work. IACR Cryptol. ePrint Arch. 2017, 203 (2017)

    Google Scholar 

  35. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: when space is of the essence. In: International Conference on Security and Cryptography for Networks (2014)

    Google Scholar 

  36. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin security and performance with strong consistency via collective signing. In: USENIX Security Symposium (2016)

    Google Scholar 

  37. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE Symposium on Security and Privacy (SP) pp. 583–598 (2018)

    Google Scholar 

  38. Li, K., Li, H., Hou, H., Li, K., Chen, Y.: Proof of vote: a high-performance consensus protocol based on vote mechanism consortium blockchain. In: 2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems, pp. 466–473 (2017)

    Google Scholar 

  39. Andreina, S., Bohli, J.M., Karame, G.O., Li, W., Marson, G.A.: Pots - a secure proof of tee-stake for permissionless blockchains. Cryptology ePrint Archive, Report 2018/1135 (2018). https://eprint.iacr.org/2018/1135

  40. Puthal, D., Mohanty, S.P., Nanda, P., Kougianos, E., Das, G.: Proof-of-authentication for scalable blockchain in resource-constrained distributed systems. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–5 (2019)

    Google Scholar 

  41. Puthal, D., Mohanty, S.P.: Proof of authentication: IoT-friendly blockchains. IEEE Potentials 38(1), 26–29 (2019). https://doi.org/10.1109/MPOT.2018.2850541

    Article  Google Scholar 

  42. Feng, J., Zhao, X., Lu, G., Zhao, F.: PoTN: a novel blockchain consensus protocol with proof-of-trust negotiation in distributed IoT networks. In: Proceedings of the 2nd International ACM Workshop on Security and Privacy for the Internet-of-Things, pp. 32–37. Association for Computing Machinery, New York (2019)

    Google Scholar 

  43. Wang, E.K., Liang, Z., Chen, C.M., Kumari, S., Khan, M.K.: PoRX: a reputation incentive scheme for blockchain consensus of IIoT. Future Gener. Comput. Syst. 102, 140–151 (2020)

    Article  Google Scholar 

  44. Popov, S.: The tangle (2015)

    Google Scholar 

  45. Zhao, L., Yu, J.: Evaluating DAG-based blockchains for IoT. In: 2019 18th IEEE International Conference On Trust, Security And Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), pp. 507–513 (2019)

    Google Scholar 

  46. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. In: Proceedings of the 13th Usenix Conference on Networked Systems Design and Implementation, NSDI 2016, pp. 45–59. USENIX Association, Berkeley (2016)

    Google Scholar 

  47. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, SOSP 2017, pp. 51–68. Association for Computing Machinery, New York (2017)

    Google Scholar 

  48. Ehmke, C., Wessling, F., Friedrich, C.M.: Proof-of-property - a lightweight and scalable blockchain protocol. In: IEEE/ACM International Workshop on Emerging Trends in Software Engineering for Blockchain (2018)

    Google Scholar 

  49. Mazieres, D., Polu, S., Barry, N., Mccaleb, J., Losa, G.: The stellar consensus protocol (SCP) (2018)

    Google Scholar 

  50. Do, T., Nguyen, T., Pham, H.: Delegated proof of reputation: a novel blockchain consensus. In: Proceedings of the 2019 International Electronics Communication Conference, IECC 2019, pp. 90–98. Association for Computing Machinery (2019)

    Google Scholar 

  51. Yu, B., Liu, J., Nepal, S., Yu, J., Rimba, P.: Proof-of-QoS: QoS based blockchain consensus protocol. Comput. Secur. 87, 101580 (2019)

    Article  Google Scholar 

  52. Liu, J., Li, W., Karame, G.O., Asokan, N.: Scalable byzantine consensus via hardware-assisted secret sharing. IEEE Trans. Comput. 68, 139–151 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Du, M., Chen, Q.J., Ma, X.: MBFT: a new consensus algorithm for consortium blockchain. IEEE Access 8, 87665–87675 (2020)

    Article  Google Scholar 

  54. Jalalzai, M.M., Busch, C., Richard, G.G.: Proteus: a scalable BFT consensus protocol for blockchains. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 308–313 (2019)

    Google Scholar 

  55. Biswas, S., Li, F., Maharjan, S.: PoBT: a lightweight consensus algorithm for scalable IoT business blockchain. IEEE Internet Things J. 7(3), 2343–2355 (2020)

    Article  Google Scholar 

  56. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake (2012)

    Google Scholar 

  57. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  58. The BitShares (2014). https://www.bitshares.foundation/papers/BitSharesBlockchain.pdf

  59. P4Titan: Slimcoin: a peer-to-peer crypto-currency with proof-of-burn (2014). https://github.com/slimcoin-project/slimcoin-project.github.io/raw/master/whitepaperSLM.pdf

  60. Kwon, J.: Tendermint: consensus without mining (2014). https://tendermint.com/static/docs/tendermint.pdf

  61. Bravo-Marquez, F., Reeves, S., Ugarte, M.: Proof-of-learning: a blockchain consensus mechanism based on machine learning competitions. In: 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON) (2019)

    Google Scholar 

  62. Chang, H., Chen, L., Li, B., Shi, Y., Jung, T.: Energy-recycling blockchain with proof-of-deep-learning. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (2019)

    Google Scholar 

  63. Shoker, A.: Sustainable blockchain through proof of exercise. In: 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), pp. 1–9 (2017)

    Google Scholar 

  64. Ambili, K.N., Sindhu, M., Sethumadhavan, M.: On federated and proof of validation based consensus algorithms in blockchain. In: IOP Conference Series: Materials Science and Engineering, vol. 225, p. 012198, August 2017. https://doi.org/10.1088/1757-899x/225/1/012198

  65. Xue, T., Yuan, Y., Ahmed, Z., Moniz, K., Cao, G., Cong, W.: Proof of contribution: a modification of proof of work to increase mining efficiency. In: IEEE Computer Software & Applications Conference (2018)

    Google Scholar 

  66. NEM technical reference (2018). https://nem.io/wp-content/themes/nem/files/NEM_techRef.pdf

  67. Shibata, N.: Proof-of-search: combining blockchain consensus formation with solving optimization problems. IEEE Access 7, 172994–173006 (2019)

    Article  Google Scholar 

  68. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

    Article  Google Scholar 

  69. Weiwei, F., Ziyue, W., Huili, S., Yunpeng, W., Yi, D.: An optimized PBFT consensus algorithm for blockchain. J. Beijing Jiaotong Univ. 43, 58 (2019)

    Google Scholar 

  70. Rong, Y., Zhang, J., Bian, J., Wu, W.: ERBFT: efficient and robust byzantine fault tolerance. In: 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 265–272 (2019)

    Google Scholar 

  71. Gao, S., Yu, T., Zhu, J., Cai, W.J.: T-PBFT: an EigenTrust-based practical byzantine fault tolerance consensus algorithm. China Commun. 16, 111–123 (2019)

    Article  Google Scholar 

  72. Haiyong, W., Kaixuan, G., Qiqing, P.: Byzantine fault tolerance consensus algorithm based on voting mechanism. J. Comput. Appl. 36, 1766–1771 (2019)

    Google Scholar 

  73. Bentov, I., Lee, C., Rosenfeld, M., Mizrahi, A.: Proof of activity: extending bitcoin’s proof of work via proof of stake. ACM Sigmetrics Perform. Eval. Rev. 42(3), 34–37 (2014)

    Article  Google Scholar 

  74. Milutinovic, M., He, W., Wu, H., Kanwal, M.: Proof of luck: an efficient blockchain consensus protocol. In: Proceedings of the 1st Workshop on System Software for Trusted Execution. SysTEX 2016, Association for Computing Machinery (2016)

    Google Scholar 

  75. Neo whitepaper (2016). https://docs.neo.org/docs/zh-cn/basic/whitepaper.html

  76. Sawtooth with PoET-SGX. https://sawtooth.hyperledger.org/docs/core/nightly/1-1/introduction.html

  77. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: On security analysis of proof-of-elapsed-time (PoET). In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_19

    Chapter  Google Scholar 

  78. Fu, X., Wang, H., Shi, P., Mi, H.: PoPF: a consensus algorithm for JCLedger. In: 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE), pp. 204–209 (2018)

    Google Scholar 

  79. Windley, P.J.: IBM’s adept project: rebooting the internet of things (2015)

    Google Scholar 

  80. Iotchain (2019). https://github.com/iot-block/iotchain

  81. IoT chain: a high-security lite IoT OS (2017). https://www.chainwhy.com/upload/default/20180613/038d009d2747d379f343f3aee991a401.pdf

Download references

Acknowledgements

We thank the anonymous reviewers for their helpful and constructive comments on our work. This work was supported in part by the National Key Research and Development Plan of China under Grant 2019YFB2012803, in part by the Key Project of Shanghai Science and Technology Innovation Action Plan under Grant 19DZ1100400 and Grant 18511103302, in part by the Key Program of Shanghai Artificial Intelligence Innovation Development Plan under Grant 2018-RGZN-02060, and in part by the Key Project of the “Intelligence plus” Advanced Research Fund of East China Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinli Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, Y., Lu, F., Liu, Y., Cong, P., Huang, X. (2020). Blockchain Consensus Mechanisms and Their Applications in IoT: A Literature Survey. In: Qiu, M. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2020. Lecture Notes in Computer Science(), vol 12454. Springer, Cham. https://doi.org/10.1007/978-3-030-60248-2_38

Download citation

Publish with us

Policies and ethics