Skip to main content

Few-Shot Representation Learning for Cold-Start Users and Items

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12317))

Abstract

Existing recommendation algorithms suffer from cold-start issues as it is challenging to learn accurate representations of cold-start users and items. In this paper, we formulate learning the representations of cold-start users and items as a few-shot learning task, and address it by training a representation function to predict the target user (item) embeddings based on limited training instances. Specifically, we propose a novel attention-based encoder serving as the neural function, with which the K training instances of a user (item) are viewed as the interactive context information to be further encoded and aggregated. Experiments show that our proposed method significantly outperforms existing baselines in predicting the representations of the cold-start users and items, and improves several downstream tasks where the embeddings of users and items are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We also select some node embedding methods (e.g., DeepWalk  [17], LINE  [20]) which accept user-item bipartite graph as input and output a pre-trained embedding for each user and item.

  2. 2.

    https://grouplens.org/datasets/movielens/.

  3. 3.

    https://www.pinterest.com/.

  4. 4.

    When training \(g_\phi \), in MovieLens-1M, the items in \(D_T\) interact with more than 30 users, and this results 2819 items in \(D_T\) and 887 items in \(D_N\). In Pinterest, the items in \(D_T\) interact with more than 30 users, and this results 8544 items in \(D_T\) and 1372 items in \(D_N\).

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NeurlPS 2013 (2013)

    Google Scholar 

  2. Brazdil, P., Giraud-Carrier, C.G., Soares, C., Vilalta, R.: Metalearning - Applications to Data Mining. Cognitive Technologies. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-73263-1

    Book  MATH  Google Scholar 

  3. Cao, Y., Wang, X., He, X., Hu, Z., Chua, T.S.: Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences. In: WWW 2019. ACM (2019)

    Google Scholar 

  4. Du, Z., Wang, X., Yang, H., Zhou, J., Tang, J.: Sequential scenario-specific meta learner for online recommendation. In: SIGKDD 2019 (2019)

    Google Scholar 

  5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML 2017, pp. 1126–1135. JMLR.org (2017)

    Google Scholar 

  6. Geng, X., Zhang, H., Bian, J., Chua, T.S.: Learning image and user features for recommendation in social networks. In: ICCV 2015, pp. 4274–4282 (2015)

    Google Scholar 

  7. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurlPS 2017, pp. 1024–1034 (2017)

    Google Scholar 

  8. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. TIIS 5(4), 1–9 (2016)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR 2016, pp. 770–778 (2016)

    Google Scholar 

  10. He, X., He, Z., Song, J., Liu, Z., Jiang, Y.G., Chua, T.S.: NAIS: neural attentive item similarity model for recommendation. IEEE Trans. Knowl. Data Eng. 30(12), 2354–2366 (2018)

    Article  Google Scholar 

  11. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: WWW 2017, pp. 173–182 (2017)

    Google Scholar 

  12. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  13. Lei Ba, J., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  14. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

    Article  Google Scholar 

  15. Munkhdalai, T., Yu, H.: Meta networks. In: ICML 2017, pp. 2554–2563. JMLR.org (2017)

    Google Scholar 

  16. Pan, F., Li, S., Ao, X., Tang, P., He, Q.: Warm up cold-start advertisements: improving CTR predictions via learning to learn id embeddings. In: SIGIR 2019 (2019)

    Google Scholar 

  17. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: SIGKDD 2014, pp. 701–710. ACM (2014)

    Google Scholar 

  18. Rendle, S.: Factorization machines with libFM. TIST 3(3), 57 (2012)

    Article  Google Scholar 

  19. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NeurlPS 2017, pp. 4077–4087 (2017)

    Google Scholar 

  20. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: WWW 2015, pp. 1067–1077 (2015)

    Google Scholar 

  21. Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., Larochelle, H.: A meta-learning perspective on cold-start recommendations for items. In: NeurlPS 2017, pp. 6904–6914 (2017)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: NeurlPS 2017, pp. 5998–6008 (2017)

    Google Scholar 

  23. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR 2018 (2018)

    Google Scholar 

  24. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NeurlPS 2016, pp. 3630–3638 (2016)

    Google Scholar 

  25. Wang, H., Zhang, F., Zhao, M., Li, W., Xie, X., Guo, M.: Multi-task feature learning for knowledge graph enhanced recommendation. In: WWW 2019 (2019)

    Google Scholar 

  26. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.: KGAT: knowledge graph attention network for recommendation. In: SIGKDD 2019, pp. 950–958 (2019)

    Google Scholar 

  27. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI 2014 (2014)

    Google Scholar 

  28. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: SIGKDD 2016. ACM (2016)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Key R&D Program of China (No. 2018YFB1004401) and NSFC (No. 61532021, 61772537, 61772536, 61702522).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, B., Zhang, J., Li, C., Chen, H. (2020). Few-Shot Representation Learning for Cold-Start Users and Items. In: Wang, X., Zhang, R., Lee, YK., Sun, L., Moon, YS. (eds) Web and Big Data. APWeb-WAIM 2020. Lecture Notes in Computer Science(), vol 12317. Springer, Cham. https://doi.org/10.1007/978-3-030-60259-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60259-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60258-1

  • Online ISBN: 978-3-030-60259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics