Skip to main content

Multi-task Attributed Graphical Lasso

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2020)

Abstract

Sparse inverse covariance estimation, i.e., Graphical Lasso, can estimate the connections among a set of random variables basing on their observations. Recent research on Graphical Lasso has been extended to multi-task settings, where multiple graphs sharing the same set of variables are estimated collectively to reduce variances. However, different tasks usually involve different variables. For example, when we want to estimate gene networks w.r.t different diseases simultaneously, the related gene sets vary. In this paper, we study the problem of multi-task Graphical Lasso where the tasks may involve different variable sets. To share information across tasks, we consider the attributes of variables and assume that the structures of graphs are not only determined by observations, but influenced by attributes. We formulate the problem of learning multiple graphs jointly with observations and attributes, i.e., Multi-task Attributed Graphical Lasso (MAGL), and propose an effective algorithm to solve it. We rely on the LogDet divergence to explore latent relations between attributes of the variables and linkage structures among the variables. Multiple precision matrices and a projection matrix are optimized such that the \(\ell _1\)-penalized negative log-likelihood and the divergence are minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banerjee, O., Ghaoui, L.E., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. JMLR 9(Mar), 485–516 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Cai, T., Liu, W., Luo, X.: A constrained l1 minimization approach to sparse precision matrix estimation. JASA 106(494), 594–607 (2011)

    Article  MATH  Google Scholar 

  3. Danaher, P., Wang, P., Witten, D.M.: The joint graphical lasso for inverse covariance estimation across multiple classes. J. R. Stat. Soc. Ser. B Stat. Methodol. 76(2), 373–397 (2014)

    Article  MathSciNet  Google Scholar 

  4. Davis, J.V., Dhillon, I.S.: Differential entropic clustering of multivariate gaussians. In: NeurIPS, pp. 337–344 (2007)

    Google Scholar 

  5. Duchi, J.C., Gould, S., Koller, D.: Projected subgradient methods for learning sparse Gaussians. In: UAI (2008)

    Google Scholar 

  6. Fan, J., Liao, Y., Liu, H.: An overview of the estimation of large covariance and precision matrices. ECONOMET J. 19(1), C1–C32 (2016)

    Article  MathSciNet  Google Scholar 

  7. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  MATH  Google Scholar 

  8. Gentles, A.J., Plevritis, S.K., Majeti, R., Alizadeh, A.A.: Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA 304(24), 2706–2715 (2010)

    Article  Google Scholar 

  9. Grechkin, M., Fazel, M., Witten, D., Lee, S.: Pathway graphical lasso. In: AAAI, pp. 2617–2623 (2015)

    Google Scholar 

  10. Guo, J., Levina, E., Michailidis, G., Zhu, J.: Joint estimation of multiple graphical models. Biometrika 98(1), 1–15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haferlach, T., et al.: Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the international microarray innovations in leukemia study group. Int. J. Clin. Oncol. 28(15), 2529–2537 (2010)

    Article  Google Scholar 

  12. Hara, S., Washio, T.: Common substructure learning of multiple graphical Gaussian models. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6_1

    Chapter  Google Scholar 

  13. Hara, S., Washio, T.: Learning a common substructure of multiple graphical Gaussian models. Neural Netw. 38, 23–38 (2013)

    Article  MATH  Google Scholar 

  14. Honorio, J., Samaras, D.: Multi-task learning of Gaussian graphical models. In: ICML, pp. 447–454 (2010)

    Google Scholar 

  15. Hsieh, C., Sustik, M.A., Dhillon, I.S., Ravikumar, P.D.: QUIC: quadratic approximation for sparse inverse covariance estimation. JMLR 15(1), 2911–2947 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Huang, S., et al.: Learning brain connectivity of Alzheimer’s disease by sparse inverse covariance estimation. NeuroImage 50(3), 935–949 (2010)

    Article  Google Scholar 

  17. Kang, Z., Peng, C., Cheng, J., Cheng, Q.: Logdet rank minimization with application to subspace clustering. Comput. Intell. Neurosci. 2015, 68 (2015)

    Article  Google Scholar 

  18. Kulis, B., Sustik, M., Dhillon, I.: Learning low-rank kernel matrices. In: ICML, pp. 505–512 (2006)

    Google Scholar 

  19. Lee, W., Liu, Y.: Joint estimation of multiple precision matrices with common structures. JMLR 16(1), 1035–1062 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Maaten, L.V.D., Hinton, G.: Visualizing data using T-SNE. JMLR 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  21. Mazumder, R., Hastie, T.: The graphical lasso: new insights and alternatives. EJS 6, 2125 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Mohan, K., London, P., Fazel, M., Witten, D., Lee, S.: Node-based learning of multiple Gaussian graphical models. JMLR 15(1), 445–488 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Sun, Y., Han, J., Gao, J., Yu, Y.: itopicmodel: information network-integrated topic modeling. In: ICDM, pp. 493–502 (2009)

    Google Scholar 

  24. Tao, Q., Huang, X., Wang, S., Xi, X., Li, L.: Multiple Gaussian graphical estimation with jointly sparse penalty. Sig. Process. 128, 88–97 (2016)

    Article  Google Scholar 

  25. Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  26. Witten, D.M., Friedman, J.H., Simon, N.: New insights and faster computations for the graphical lasso. J. Comput. Graph Stat. 20(4), 892–900 (2011)

    Article  MathSciNet  Google Scholar 

  27. Yang, S., Lu, Z., Shen, X., Wonka, P., Ye, J.: Fused multiple graphical lasso. SIOPT 25(2), 916–943 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yin, H., Liu, X., Kong, X.: Coherent graphical lasso for brain network discovery. In: ICDM (2018)

    Google Scholar 

  29. Yuan, X.: Alternating direction methods for sparse covariance selection. Optimization Online (2009)

    Google Scholar 

  30. Zhang, Y., Xiong, Y., Liu, X., Kong, X., Zhu, Y.: Meta-path graphical lasso for learning heterogeneous connectivities. In: SDM, pp. 642–650 (2017)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the Shanghai Science and Technology Development Fund No. 19511121204, No. 19DZ1200802, and the National Natural Science Foundation of China Projects No. U1636207, No. U1936213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Xiong, Y., Kong, X., Liu, X., Zhu, Y. (2020). Multi-task Attributed Graphical Lasso. In: Wang, X., Zhang, R., Lee, YK., Sun, L., Moon, YS. (eds) Web and Big Data. APWeb-WAIM 2020. Lecture Notes in Computer Science(), vol 12317. Springer, Cham. https://doi.org/10.1007/978-3-030-60259-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60259-8_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60258-1

  • Online ISBN: 978-3-030-60259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics