Skip to main content

Debiasing Learning to Rank Models with Generative Adversarial Networks

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2020)

Abstract

Unbiased learning to rank aims to generate optimal orders for candidates utilizing noisy click-through data. To deal with such problem, most models treat the biased click labels as combined supervision of relevance and propensity, which pay little attention to the uncertainty of implicit user feedback. We propose a semi-supervised framework to address this issue, namely ULTRGAN (Unbiased Learning To Rank with Generative Adversarial Networks). The unified framework regards the task as semi-supervised learning with missing labels, and employs adversarial training to debias click-through datasets. In ULTRGAN, the generator samples potential negative examples combined with true positive examples for the discriminator. Meanwhile, the discriminator challenges the generator for better performances. We further incorporate pairwise debiasing to generate unbiased labels diffusing from the discriminator to the generator. Experimental results over both synthetic and real-world datasets show the effectiveness and robustness of ULTRGAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code is available athttps://github.com/April-Cai/Debiasing-Learning-to-Rank-Models-with-GANs.

  2. 2.

    https://github.com/QingyaoAi/Unbiased-Learning-to-Rank-with-Unbiased-Propensity-Estimation.

  3. 3.

    https://github.com/acbull/Unbiased_LambdaMart.

  4. 4.

    https://lucene.apache.org/.

References

  1. Ai, Q., Bi, K., Luo, C., Guo, J., Croft, W.B.: Unbiased learning to rank with unbiased propensity estimation. In: SIGIR, pp. 385–394 (2018)

    Google Scholar 

  2. Ai, Q., Mao, J., Liu, Y., Croft, W.B.: Unbiased learning to rank: theory and practice. In: CIKM, pp. 2305–2306 (2018)

    Google Scholar 

  3. Bekker, J., Davis, J.: Learning from positive and unlabeled data: a survey. Mach. Learn. 109, 719–760 (2020)

    Article  MathSciNet  Google Scholar 

  4. Borisov, A., Markov, I., De Rijke, M., Serdyukov, P.: A neural click model for web search. In: WWW, pp. 531–541 (2016)

    Google Scholar 

  5. Burges, C., et al.: Learning to rank using gradient descent. In: ICML, pp. 89–96 (2005)

    Google Scholar 

  6. Burges, C.J.: From ranknet to lambdarank to lambdamart: an overview. Learning 11(23–581), 81 (2010)

    Google Scholar 

  7. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: ICML, pp. 129–136 (2007)

    Google Scholar 

  8. Chapelle, O., Chang, Y.: Yahoo! learning to rank challenge overview. In: Proceedings of the Learning to Rank Challenge, pp. 1–24 (2011)

    Google Scholar 

  9. Chen, J., Mao, J., Liu, Y., Zhang, M., Ma, S.: TianGong-ST: a new dataset with large-scale refined real-world web search sessions. In: CIKM, pp. 2485–2488 (2019)

    Google Scholar 

  10. Chuklin, A., Markov, I., de Rijke, M.: Click models for web search. Synth. Lect. Inf. Concepts Retr. Serv. 7(3), 1–115 (2015)

    Google Scholar 

  11. Cossock, D., Zhang, T.: Subset ranking using regression. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 605–619. Springer, Heidelberg (2006). https://doi.org/10.1007/11776420_44

    Chapter  Google Scholar 

  12. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of click position-bias models. In: WSDM, pp. 87–94 (2008)

    Google Scholar 

  13. Dupret, G.E., Piwowarski, B.: A user browsing model to predict search engine click data from past observations. In: SIGIR, pp. 331–338 (2008)

    Google Scholar 

  14. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  15. Hu, Z., Wang, Y., Peng, Q., Li, H.: Unbiased lambdamart: an unbiased pairwise learning-to-rank algorithm. In: WWW, pp. 2830–2836 (2019)

    Google Scholar 

  16. Joachims, T.: Optimizing search engines using clickthrough data. In: KDD, pp. 133–142 (2002)

    Google Scholar 

  17. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: SIGIR, vol. 51, pp. 4–11 (2017)

    Google Scholar 

  18. Joachims, T., Swaminathan, A., Schnabel, T.: Unbiased learning-to-rank with biased feedback. In: WSDM, pp. 781–789 (2017)

    Google Scholar 

  19. Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retr. 3(3), 225–331 (2009)

    Article  Google Scholar 

  20. Lu, S., Dou, Z., Jun, X., Nie, J.Y., Wen, J.R.: PSGAN: a minimax game for personalized search with limited and noisy click data. In: SIGIR, pp. 555–564 (2019)

    Google Scholar 

  21. Oosterhuis, H., Jagerman, R., de Rijke, M.: Unbiased learning to rank: counterfactual and online approaches. In: WWW (Companion Volume), pp. 299–300 (2020)

    Google Scholar 

  22. Oosterhuis, H., de Rijke, M.: Differentiable unbiased online learning to rank. In: CIKM, pp. 1293–1302 (2018)

    Google Scholar 

  23. O’Brien, M., Keane, M.T.: Modeling result-list searching in the world wide web: the role of relevance topologies and trust bias. In: Proceedings of the 28th Annual Conference of the Cognitive Science Society, vol. 28, pp. 1881–1886. Citeseer (2006)

    Google Scholar 

  24. Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-through rate for new ads. In: WWW, pp. 521–530 (2007)

    Google Scholar 

  25. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)

    Article  MathSciNet  Google Scholar 

  26. Steck, H.: Training and testing of recommender systems on data missing not at random. In: KDD, pp. 713–722 (2010)

    Google Scholar 

  27. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: NIPS, pp. 1057–1063 (2000)

    Google Scholar 

  28. Wang, J., et al.: IRGAN: a minimax game for unifying generative and discriminative information retrieval models. In: SIGIR, pp. 515–524 (2017)

    Google Scholar 

  29. Wang, X., Bendersky, M., Metzler, D., Najork, M.: Learning to rank with selection bias in personal search. In: SIGIR, pp. 115–124 (2016)

    Google Scholar 

  30. Wang, X., Golbandi, N., Bendersky, M., Metzler, D., Najork, M.: Position bias estimation for unbiased learning to rank in personal search. In: WSDM, pp. 610–618 (2018)

    Google Scholar 

  31. Yang, L., Cui, Y., Xuan, Y., Wang, C., Belongie, S., Estrin, D.: Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In: RecSys, pp. 279–287 (2018)

    Google Scholar 

  32. Yue, Y., Joachims, T.: Interactively optimizing information retrieval systems as a dueling bandits problem. In: ICML, pp. 1201–1208 (2009)

    Google Scholar 

  33. Yue, Y., Patel, R., Roehrig, H.: Beyond position bias: Examining result attractiveness as a source of presentation bias in clickthrough data. In: WWW, pp. 1011–1018 (2010)

    Google Scholar 

  34. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: ACM SIGIR Forum, vol. 51, pp. 268–276. ACM, New York (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000904. We thank the anonymous reviewers for their careful reading and insightful comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, H., Wang, C., He, X. (2020). Debiasing Learning to Rank Models with Generative Adversarial Networks. In: Wang, X., Zhang, R., Lee, YK., Sun, L., Moon, YS. (eds) Web and Big Data. APWeb-WAIM 2020. Lecture Notes in Computer Science(), vol 12318. Springer, Cham. https://doi.org/10.1007/978-3-030-60290-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60290-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60289-5

  • Online ISBN: 978-3-030-60290-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics