Skip to main content

Dual-Robotic Ultrasound System for In Vivo Prostate Tomography

  • Conference paper
  • First Online:
Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis (ASMUS 2020, PIPPI 2020)

Abstract

Ultrasound computed tomography (USCT) offers quantitative anatomical tissue characterization for cancer detection. While most research and commercial development has focused on submerging target anatomy in a transducer-lined cylindrical water tank, this is not practical for imaging deep anatomy and an alternative approach using aligned abdominal and endoluminal ultrasound probes is required. This work outlines and validates a clinical workflow and real-time motion framework for a novel dual-robotic approach specific to in vivo prostate imaging: one arm wielding a linear abdominal probe, the other wielding a linear transrectal ultrasound (TRUS) probe. After calibration, the robotic system works to keep the abdominal probe collinear with the physician-rotated TRUS probe using a convex contour tracking scheme, while also enforcing its gentle contact with the patient’s pubic region to capture the ultrasound slices needed for limited-angle tomographic reconstruction. The repeatable and accurate robotic system presents feasibility for prostate USCT and future malignancy diagnosis and staging in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aalamifar, F.: Co-robotic ultrasound tomography: a new paradigm for quantitative ultrasound imaging. Ph.D. thesis, Johns Hopkins University, October 2016

    Google Scholar 

  2. Ackerman, M.K., Cheng, A., Boctor, E., Chirikjian, G.: Online ultrasound sensor calibration using gradient descent on the Euclidean group. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4900–4905 (2014)

    Google Scholar 

  3. Anas, E.M.A., et al.: CNN and back-projection: limited angle ultrasound tomography for speed of sound estimation. In: Medical Imaging 2019: Ultrasonic Imaging and Tomography, vol. 10955, p. 109550M. International Society for Optics and Photonics (2019)

    Google Scholar 

  4. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Article  Google Scholar 

  5. Cheng, A., et al.: Deep learning image reconstruction method for limited-angle ultrasound tomography in prostate cancer. In: Medical Imaging 2019: Ultrasonic Imaging and Tomography, vol. 10955, p. 1095516. International Society for Optics and Photonics (2019)

    Google Scholar 

  6. CISST libraries and Surgical Assistant Workstation (SAW). https://github.com/jhu-cisst/cisst/wiki

  7. Delphinus Medical Technologies: Softvue system (2020). http://www.delphinusmt.com/technology/. Accessed 11 Mar 2020

  8. Harvey, C., Pilcher, J., Richenberg, J., Patel, U., Frauscher, F.: Applications of transrectal ultrasound in prostate cancer. Br. J. Radiol. 85(Spec. Issue 1), S3–S17 (2012)

    Article  Google Scholar 

  9. Horn, B., Hilden, H., Negahdaripour, S.: Closed-form solution of absolute orientation using orthonormal matrices. J. Opt. Soc. Am. A 5, 1127–1135 (1988). https://doi.org/10.1364/JOSAA.5.001127

    Article  MathSciNet  Google Scholar 

  10. Lenox, M., et al.: 3D inverse scattering in wholebody ultrasound applications (conference presentation). In: Medical Imaging 2019: Ultrasonic Imaging and Tomography, vol. 10955, p. 1095511. International Society for Optics and Photonics (2019)

    Google Scholar 

  11. Lozano, R., Brogliato, B.: Adaptive hybrid force-position control for redundant manipulators. In: 29th IEEE Conference on Decision and Control, vol. 3. pp. 1949–1950 (1990)

    Google Scholar 

  12. Marks, L., Young, S., Natarajan, S.: MRI-ultrasound fusion for guidance of targeted prostate biopsy. Curr. Opin. Urol. 23(1), 43 (2013)

    Article  Google Scholar 

  13. Natesan, R., Wiskin, J., Lee, S., Malik, B.H.: Quantitative assessment of breast density: transmission ultrasound is comparable to mammography with tomosynthesis. Cancer Prev. Res. 12(12), 871–876 (2019)

    Article  Google Scholar 

  14. QT Ultrasound: Quantitative transmission ultrasound: an evolution in breast imaging (2020). https://www.qtultrasound.com/about-us/. Accessed 11 Mar 2020

  15. Seifabadi, R., et al.: Correlation of ultrasound tomography to MRI and pathology for the detection of prostate cancer. In: Medical Imaging 2019: Ultrasonic Imaging and Tomography, vol. 10955, p. 109550C. International Society for Optics and Photonics (2019)

    Google Scholar 

  16. Tanoue, H., Hagiwara, Y., Kobayashi, K., Saijo, Y.: Ultrasonic tissue characterization of prostate biopsy tissues by ultrasound speed microscope. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 8499–8502. IEEE (2011)

    Google Scholar 

  17. Wallis, C.J., Haider, M.A., Nam, R.K.: Role of mpMRI of the prostate in screening for prostate cancer. Transl. Androl. Urol. 6(3), 464 (2017)

    Article  Google Scholar 

  18. Wiskin, J., et al.: Full wave 3D inverse scattering transmission ultrasound tomography: breast and whole body imaging. In: 2019 IEEE International Ultrasonics Symposium (IUS), pp. 951–958. IEEE (2019)

    Google Scholar 

  19. Wiskin, J.W., Malik, B., Natesan, R., Pirshafiey, N., Klock, J., Lenox, M.: 3D full inverse scattering ultrasound tomography of the human knee (conference presentation). In: Medical Imaging 2019: Ultrasonic Imaging and Tomography, vol. 10955, p. 109550K. International Society for Optics and Photonics (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Gilboy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilboy, K.M., Wu, Y., Wood, B.J., Boctor, E.M., Taylor, R.H. (2020). Dual-Robotic Ultrasound System for In Vivo Prostate Tomography. In: Hu, Y., et al. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. ASMUS PIPPI 2020 2020. Lecture Notes in Computer Science(), vol 12437. Springer, Cham. https://doi.org/10.1007/978-3-030-60334-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60334-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60333-5

  • Online ISBN: 978-3-030-60334-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics