Skip to main content

Multi-modal Perceptual Adversarial Learning for Longitudinal Prediction of Infant MR Images

  • Conference paper
  • First Online:
Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis (ASMUS 2020, PIPPI 2020)

Abstract

Longitudinal magnetic resonance imaging (MRI) is essential in neuroimaging studies of early brain development. However, incomplete data is an inevitable problem in longitudinal studies because of participant attrition and scan failure. Data imputation is a possible way to address such missing data. Here, we propose a novel 3D multi-modal perceptual adversarial network (MPGAN) to predict a missing MR image from an existing longitudinal image of the same subject. To the best of our knowledge, this is the first application of deep generative methods for longitudinal image prediction of structural MRI in the first year of life, where brain volume and image intensities are changing dramatically. In order to produce sharper and more realistic images, we incorporate the perceptual loss into the adversarial training process. To leverage complementary information contained in the multi-modality data, MPGAN predicts T1w and T2w images jointly in the prediction process. We evaluated MPGAN versus six alternative approaches based on visual as well as quantitative assessment. The results indicate that our MPGAN predicts missing MR images in an accurate and visually realistic fashion, and shows better performance than the alternative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilmore, J.H., et al.: Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci. 19(3), 123–137 (2018)

    Article  Google Scholar 

  2. Hazlett, H.C., et al.: Early brain development in infants at high risk for autism spectrum disorder. Nature 542(7641), 348–351 (2017)

    Article  Google Scholar 

  3. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  4. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T., Išgum, I.: Deep MR to CT synthesis using unpaired data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 14–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_2

    Chapter  Google Scholar 

  5. Pan, Y., Liu, M., Lian, C., Zhou, T., Xia, Y., Shen, D.: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease Diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 455–463. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_52

    Chapter  Google Scholar 

  6. Qu, L., Wang, S., Yap, P.-T., Shen, D.: Wavelet-based semi-supervised adversarial learning for synthesizing realistic 7T from 3T MRI. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 786–794. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_86

    Chapter  Google Scholar 

  7. Zhao, F., et al.: Harmonization of infant cortical thickness using surface-to-surface cycle-consistent adversarial networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 475–483. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_52

    Chapter  Google Scholar 

  8. Xia, T., Chartsias, A., Tsaftaris, S.A.: Consistent brain ageing synthesis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 750–758. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_82

    Chapter  Google Scholar 

  9. Ravi, D., Alexander, D.C., Oxtoby, N.P.: Degenerative adversarial NeuroImage nets: generating images that mimic disease progression. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 164–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_19

    Chapter  Google Scholar 

  10. Pathak, D., et al.: Context encoders: feature learning by inpainting. In: CVPR, pp. 2536–2544 (2016)

    Google Scholar 

  11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  12. Zhou, Z., et al.: Models genesis: generic autodidactic models for 3D medical image analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 384–393. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_42

    Chapter  Google Scholar 

  13. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  14. Zhu, J.Y., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)

    Google Scholar 

  15. Wang, Z., et al.: Mean squared error: love it or leave it? A new look at signal fidelity measures. Signal Process. Mag. 26(1), 98–117 (2009)

    Article  Google Scholar 

  16. Huynh-Thu, Q., et al.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)

    Article  Google Scholar 

  17. Wang, J., et al.: Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline. Front. Neuroinformatics 8, 7 (2014)

    Article  Google Scholar 

  18. Zhang, R., et al.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)

    Google Scholar 

  19. Simonyan K., et al.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

Download references

Acknowledgement

This study was supported by grants from the Major Scientific Project of Zhejiang Lab (No. 2018DG0ZX01), the National Institutes of Health (R01-HD055741, T32-HD040127, U54-HD079124, U54-HD086984, R01-EB021391), Autism Speaks, and the Simons Foundation (140209). MDS is supported by a U.S. National Institutes of Health (NIH) career development award (K12-HD001441). The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liying Peng or Lanfen Lin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1781 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, L. et al. (2020). Multi-modal Perceptual Adversarial Learning for Longitudinal Prediction of Infant MR Images. In: Hu, Y., et al. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. ASMUS PIPPI 2020 2020. Lecture Notes in Computer Science(), vol 12437. Springer, Cham. https://doi.org/10.1007/978-3-030-60334-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60334-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60333-5

  • Online ISBN: 978-3-030-60334-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics