Skip to main content

Guidewire Segmentation in 4D Ultrasound Sequences Using Recurrent Fully Convolutional Networks

  • Conference paper
  • First Online:
Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis (ASMUS 2020, PIPPI 2020)

Abstract

Accurate, real-time segmentation of thin, deformable, and moving objects in noisy medical ultrasound images remains a highly challenging task. This paper addresses the problem of segmenting guidewires and other thin, flexible devices from 4D ultrasound image sequences acquired during minimally-invasive surgical interventions. We propose a deep learning method based on a recurrent fully convolutional network architecture whose design captures temporal information from dense 4D (3D+time) image sequences. The network uses convolutional gated recurrent units interposed between the halves of a VNet-like model such that the skip-connections embedded in the encoder-decoder are preserved. Testing on realistic phantom tissues, ex vivo and human cadaver specimens, and live animal models of peripheral vascular and cardiovascular disease, we show that temporal encoding improves segmentation accuracy compared to standard single-frame model predictions in a way that is not simply associated to an increase in model size. Additionally, we demonstrate that our approach may be combined with traditional techniques such as active splines to further enhance stability over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shu, J., Santulli, G.: Update on peripheral artery disease: epidemiology and evidence-based facts. Atherosclerosis 275, 379–381 (2018)

    Article  Google Scholar 

  2. Roth, G.A., Johnson, C., Abajobir, A., et al.: Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 70(1), 1–25 (2017)

    Article  Google Scholar 

  3. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 4th International Conference on 3D Vision (2016)

    Google Scholar 

  4. Mishra, D., Chaudhury, S., Sarkar, M., Soin, A.: Ultrasound image segmentation: a deeply supervised network with attention to boundaries. IEEE TMBE (2018)

    Google Scholar 

  5. Tetteh, G., et al.: DeepVesselNet: vessel segmentation, centerline prediction and bifurcation detection in 3D angiographic volumes. arXiv:1803.09340 [cs.CV] (2018)

  6. Merkow, J., Marsden, A., Kriegman, D., Tu, Z.: Dense volume-to-volume vascular boundary detection. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 371–379. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_43

    Chapter  Google Scholar 

  7. Yurdakul, E., Yemez, Y.: Semantic segmentation of RGBD videos with recurrent fully convolutional neural networks. In: Proceedings of the ICCV 2017. IEEE (2017)

    Google Scholar 

  8. Tokmakov, P., Alahari, K., Schmid, C.: Learning video object segmentation with visual memory. In: Proceedings of the IEEE ICCV 2017, pp. 4491–4500. IEEE (2017)

    Google Scholar 

  9. Valipour, S., Siam, M., Jagersand, M., Ray, N.: Recurrent fully convolutional networks for video segmentation. In: Proceedings of the IEEE WACV 2017. IEEE, Santa Rosa (2017)

    Google Scholar 

  10. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of the ICCV 2019. IEEE (2019)

    Google Scholar 

  11. Tong, Q., et al.: RIANet: recurrent interleaved attention network for cardiac MRI segmentation. Comput. Biol. Med. 109, 290–302 (2019)

    Article  Google Scholar 

  12. Chen, J., Yang, L., Zhang, Y., Alber, M., Chen, D.Z.: Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. In: Proceedings of the NIPS 2016, pp. 3036–3044. Curran (2016)

    Google Scholar 

  13. Myronenko, A., et al.: 4D CNN for semantic segmentation of cardiac volumetric sequences. In: Pop, M., et al. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 72–80. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_8

    Chapter  Google Scholar 

  14. Sun, C., et al.: Segmentation of 4D images via space-time neural networks. In: Proceedings of the SPIE Medical Imaging 2020. SPIE (2020)

    Google Scholar 

  15. Kang, J., Samarasinghe, G., Senanayak, U., Conjeti, S., Sowmya, A.: Deep learning for volumetric segmentation in spatio-temporal data: application to segmentation of prostate in DCE-MRI. In: Proceedings of the ISBI 2019, pp. 61–65. IEEE (2019)

    Google Scholar 

  16. Cheng, J., Tsai, Y., Wang, S., Yang, M.S.: SegFlow: joint learning for video object segmentation and optical flow. In: Proceedings of the ICCV (2017)

    Google Scholar 

  17. Gao, Y., Phillips, J., Zheng, Y., Min, R., Fletcher, P., Gerig, G.: Fully convolutional structured LSTM networks for joint 4D medical image segmentation. In: Proceedings of the ISBI 2019, pp. 1104–1108. IEEE (2019)

    Google Scholar 

  18. Milletari, F., Rieke, N., Baust, M., Esposito, M., Navab, N.: CFCM: segmentation via coarse to fine context memory. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 667–674. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_76

    Chapter  Google Scholar 

  19. Arbelle, A., Raviv, T.R.: Microscopy cell segmentation via convolutional LSTM networks. In: Proceedings of the ISBI (2019)

    Google Scholar 

  20. Mathai, T., Jin, L., Gorantla, V., Galeotti, J.: Fast vessel segmentation and tracking in ultra high-frequency ultrasound images. arXiv:1807.08784 [cs.CV] (2019)

  21. Fehling, M.K., Grosch, F., Schuster, M.E., Schick, B., Lohscheller, J.: Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network. PLoS One 15(2), e0227791 (2020)

    Article  Google Scholar 

  22. Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional networks for learning video representations. arXiv:1511.06432 [cs.CV] (2015)

  23. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts (2016). http://distill.pub/2016/deconv-checkerboard/

  24. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  25. Zhao, F., Chen, Y., Hou, Y., He, X.: Segmentation of blood vessels using rule-based and machine-learning-based methods: a review. Multimedia Syst. 25(2), 109–118 (2017). https://doi.org/10.1007/s00530-017-0580-7

    Article  Google Scholar 

  26. Slabaugh, G., Kong, K., Unal, G., Fang, T.: Variational guidewire tracking using phase congruency. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 612–619. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75759-7_74

    Chapter  Google Scholar 

  27. Chang, P., Rolls, A., Praetere, H., Poorten, E.: Robust catheter and guidewire tracking using B-spline tube model and pixel-wise posteriors. IEEE Autom. Robot. Lett. 1, 303–308 (2016)

    Article  Google Scholar 

  28. Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: ICPR 1994, Jerusalem, Israel, pp. A:566–A:568 (1994)

    Google Scholar 

  29. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15, 29 (2015)

    Article  Google Scholar 

  30. Yang, H., Shan, C., Kolen, A., With, P.H.N.: Improving catheter segmentation and localization in 3D cardiac ultrasound using direction-fused FCN. In: Proceedings of the ISBI (2019)

    Google Scholar 

  31. Gherardini, M., Mazomenos, E., Menciassi, A., Stoyanov, D.: Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets. Comput. Methods Programs Biomed. 192, 105420 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Doug Stanton for the development of the phantom models used in the study. We would like to acknowledge Vipul Pai Raikar, Mingxin Zheng, and Sibo Li for their assistance with the data acquisition setup. We thank Shyam Bharat for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Lee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2279 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, B.C., Vaidya, K., Jain, A.K., Chen, A. (2020). Guidewire Segmentation in 4D Ultrasound Sequences Using Recurrent Fully Convolutional Networks. In: Hu, Y., et al. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. ASMUS PIPPI 2020 2020. Lecture Notes in Computer Science(), vol 12437. Springer, Cham. https://doi.org/10.1007/978-3-030-60334-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60334-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60333-5

  • Online ISBN: 978-3-030-60334-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics