Skip to main content

Indoor vs. Outdoor Scene Classification for Mobile Robots

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2020)

Abstract

This paper deals with the task of automatic indoor vs. outdoor classification from image data with respect to future usage in mobile robotics. For the requirements of this research, we utilize the Miniplaces dataset. We compare a large number of classic machine learning approaches such as Support Vector Machine, k-Nearest Neighbor, Decision Tree, or Naive Bayes using various color and texture description methods on a single dataset. Moreover, we employ some of the most important neural network-based approaches from the last four years. The best tested approach reaches 96.17% classification accuracy. To our best knowledge, this paper presents the most extensive comparison of classification approaches in the task of indoor vs. outdoor classification ever done on a single dataset. We also address the processing time problem, and we discuss using the applied methods in real-time robotic tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The rest of our results can be found in public GitHub repository: https://github.com/neduchal/io_classification_experiment.

References

  1. Chen, C., Ren, Y., Kuo, C.-C.J.: Large-scale indoor/outdoor image classification via expert decision fusion (EDF). In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014. LNCS, vol. 9008, pp. 426–442. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16628-5_31

    Chapter  Google Scholar 

  2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  3. Cvetkovic, S.S., Nikolić, S.V., Ilic, S.: Effective combining of color and texture descriptors for indoor-outdoor image classification. Facta Universitatis, Ser.: Electron. Energetics 27(3), 399–410 (2014)

    Google Scholar 

  4. Ganesan, A., Balasubramanian, A.: Indoor versus outdoor scene recognition for navigation of a micro aerial vehicle using spatial color gist wavelet descriptors. Vis. Comput. Ind. Biomed. Art 2(1), 1–13 (2019). https://doi.org/10.1186/s42492-019-0030-9

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  7. Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning (2019)

    Google Scholar 

  8. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  9. Neduchal, P., Bureš, L., Železný, M.: Environment detection system for localization and mapping purposes. IFAC-PapersOnLine 52(27), 323–328 (2019)

    Article  Google Scholar 

  10. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library, pp. 8024–8035 (2019)

    Google Scholar 

  11. Payne, A., Singh, S.: Indoor vs. outdoor scene classification in digital photographs. Pattern Recogn. 38(10), 1533–1545 (2005)

    Google Scholar 

  12. Raja, R., Roomi, S.M.M., Dharmalakshmi, D.: Robust indoor/outdoor scene classification. In: 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR), pp. 1–5. IEEE (2015)

    Google Scholar 

  13. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  14. Serrano, N., Savakis, A., Luo, A.: A computationally efficient approach to indoor/outdoor scene classification. In: Object Recognition Supported by User Interaction for Service Robots, vol. 4, pp. 146–149. IEEE (2002)

    Google Scholar 

  15. Shahriari, M., Bergevin, R.: A two-stage outdoor-indoor scene classification framework: experimental study for the outdoor stage. In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8. IEEE (2016)

    Google Scholar 

  16. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  19. Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database, pp. 42–51. IEEE (1998)

    Google Scholar 

  20. Tahir, W., Majeed, A., Rehman, T.: Indoor/outdoor image classification using GIST image features and neural network classifiers. In: 2015 12th International Conference on High-Capacity Optical Networks and Enabling/Emerging Technologies (HONET), pp. 1–5. IEEE (2015)

    Google Scholar 

  21. Wang, L., Guo, S., Huang, W., Xiong, Y., Qiao, Y.: Knowledge guided disambiguation for large-scale scene classification with multi-resolution CNNs. IEEE Trans. Image Process. 26(4), 2055–2068 (2017)

    Article  MathSciNet  Google Scholar 

  22. Wu, J., Rehg, J.M.: CENTRIST: a visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501 (2010)

    Google Scholar 

  23. Xiao, J., Ehinger, K.A., Hays, J., Torralba, A., Oliva, A.: Sun database: exploring a large collection of scene categories. Int. J. Comput. Vis. 119(1), 3–22 (2016). https://doi.org/10.1007/s11263-014-0748-y

    Article  MathSciNet  Google Scholar 

  24. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. CoRR abs/1611.05431 (2016)

    Google Scholar 

  25. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  26. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1452–1464 (2017)

    Article  Google Scholar 

  27. Zhou, L., Zhou, Z., Hu, D.: Scene classification using multi-resolution low-level feature combination. Neurocomputing 122, 284–297 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education of the Czech Republic, project No. LTARF18017. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Neduchal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neduchal, P., Gruber, I., Železný, M. (2020). Indoor vs. Outdoor Scene Classification for Mobile Robots. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2020. Lecture Notes in Computer Science(), vol 12336. Springer, Cham. https://doi.org/10.1007/978-3-030-60337-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60337-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60336-6

  • Online ISBN: 978-3-030-60337-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics