Skip to main content

A Modular Deep Learning Architecture for Anomaly Detection in HRI

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12336))

Included in the following conference series:

Abstract

Considering humans as a non-deterministic factor makes anomaly detection in Human-Robot Interaction scenarios rather a challenging problem. Anomalous events like unexpected user interaction or unforeseen environment changes are unknown before they happen. On the other hand, the work process or user intentions could evolve in time. To address this issue, a modular deep learning approach is presented that is able to learn normal behavior patterns in an unsupervised manner. We combined the unsupervised feature extraction learning ability of an autoencoder with a sequence modeling neural network. Both models were firstly evaluated on benchmark video datasets, revealing adequate performance comparable to the state-of-the-art methods. For HRI application, a continuous training approach for real-time anomaly detection was developed and evaluated in an HRI-experiment with a collaborative robot, ToF camera, and proximity sensors. In the user study with 10 subjects irregular interactions and misplaced objects were the most common anomalies, which system was able to detect reliably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldenbourg, R.: Gesundheits-Ingenieur. 13, 39, 40, 163 (1890)

    Google Scholar 

  2. Hasan, M., et al.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  3. Del Giorno, A., Bagnell, J.A., Hebert, M.: A discriminative framework for anomaly detection in large videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 334–349. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_21

    Chapter  Google Scholar 

  4. Medel, J.R.: Anomaly detection using predictive convolutional long short-term memory units (2016)

    Google Scholar 

  5. Chong, Y.S., Tay, Y.H.: Abnormal event detection in videos using spatiotemporal autoencoder. In: Cong, F., Leung, A., Wei, Q. (eds.) ISNN 2017. LNCS, vol. 10262, pp. 189–196. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59081-3_23

    Chapter  Google Scholar 

  6. Sabokrou, M., et al.: Real-time anomaly detection and localization in crowded scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2015)

    Google Scholar 

  7. Wang, J.H., Miao, Y.Q., Khamis, A., Karray, F., Liang, J.: Adaptation approaches in unsupervised learning: a survey of the state-of-the-art and future directions. In: Campilho, A., Karray, F. (eds.) ICIAR 2016. LNCS, vol. 9730, pp. 3–11. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41501-7_1

    Chapter  Google Scholar 

  8. Park, C., Huang, J.Z., Ding, Y.: A computable plug-in estimator of minimum volume sets for novelty detection. Oper. Res. 58(5), 1469–1480 (2009)

    Article  MathSciNet  Google Scholar 

  9. Breaban, M., Luchian, H.: Outlier detection with nonlinear projection pursuit. Int. J. Comput. Commun. Control 8(1), 30–36 (2013)

    Article  Google Scholar 

  10. Zhang, K., Hutter, M., Jin, H.: A new local distance-based outlier detection approach for scattered real-word data. Adv. Knowl. Discov. Data Min. 5476, 813–822 (2009)

    Article  Google Scholar 

  11. Cabral, G.G., Oliveira, A.L.I., Cahu, C.B.G.: Combining nearest neighbor data description and structural risk minimization for one-class classification. Neural Comput. Appl. 18(2), 175–183 (2009)

    Article  Google Scholar 

  12. Miao, Y.Q., Farahat, A.K., Kamel, M.S.: Locally adaptive density ratio for detecting novelty in twitter streams. In: The 6th International Workshop on Modeling Social Media (MSM) - Behavioral Analytics in Social Media, Big Data and the Web, pp. 799–804 (2015)

    Google Scholar 

  13. Song, L., Teo, C.H., Smola, A.J.: Relative novelty detection. In: International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 536–543 (2009)

    Google Scholar 

  14. Sodemann, A.A., Ross, M.P., Borghetti, B.J.: A review of anomaly detection in automated surveillance. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 1257–1272 (2012)

    Article  Google Scholar 

  15. Chen, Z., Li, W.: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. IEEE Trans. Instrum. Meas. 66(7), 1693–1702 (2017)

    Article  Google Scholar 

  16. Khamis, A., et al.: The effects of outliers data on neural network performance. JApSc 5(8), 1394–1398 (2005)

    Google Scholar 

  17. Klein, B.D., Rossin, D.F.: Data quality in neural network models: effect of error rate and magnitude of error on predictive accuracy. Omega 27(5), 569–582 (1999)

    Article  Google Scholar 

  18. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  19. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: Proceedings of the IEEE International Conference on Computer Vision (2013)

    Google Scholar 

  20. Mahadevan, V., et al.: Anomaly detection in crowded scenes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE (2010)

    Google Scholar 

  21. Alagi, H., Navarro, S.E., Mende, M., Hein, B.: A versatile and modular capacitive tactile proximity sensor. In:2016 IEEE Haptics Symposium (HAPTICS), Philadelphia, PA, pp. 290–296 (2016). https://doi.org/10.1109/HAPTICS.2016.7463192

  22. Wang, T., Snoussi, H.: Histograms of optical flow orientation for abnormal events detection. In:2013 IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS). IEEE (2013)

    Google Scholar 

  23. Finch, T.: Incremental calculation of weighted mean and variance. Univ. Cambridge 4(11–5), 41–42 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergely Sóti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sóti, G., Mamaev, I., Hein, B. (2020). A Modular Deep Learning Architecture for Anomaly Detection in HRI. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2020. Lecture Notes in Computer Science(), vol 12336. Springer, Cham. https://doi.org/10.1007/978-3-030-60337-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60337-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60336-6

  • Online ISBN: 978-3-030-60337-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics