Skip to main content

Algorithms of Posteriori Multi-objective Optimization for Robotic Gripper Design

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2020)

Abstract

In this paper, the posteriori methods, such as NSGA-II, MOGWO and MOPSO, are considered in solving multicriteria optimization problems. The main goal of these methods is to find set of non-dominated solutions or Pareto front using Pareto dominance. A kinematic description of the processed four-finger gripper prototype for picking tomatoes, its objective functions and constraint functions are presented. The main advantage of this prototype is that it uses the same driver to simultaneously control the movements of the fingers and the suction nozzle. Three optimization cases are considered: optimization of two objective functions, optimization of objective functions, and optimization of all objective functions simultaneously. To optimize the task of multi-objective functions, a normalized weighted objective function with weightage factors is used. The results of optimizing the kinematic gripper design using posteriori methods method performance measure are presented. Depending on the selected objective functions, we can choose a set of sizes of kinematic gripper elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagoev, Z.V., Denisenko, V.A., Lyutikova, L.A.: System of autonomous robot machine vision for agricultural application in mountain territories based on the multi-agent cognitive architectures. Sustain. Dev. Mt. Territ. 10(2), 289–297 (2018)

    Article  Google Scholar 

  2. Pavliuk, N., Saveliev, A., Cherskikh, E., Pykhov, D.: Formation of modular structures with mobile autonomous reconfigurable system. In: Ronzhin, A., Shishlakov, V. (eds.) Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”. SIST, vol. 154, pp. 383–395. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9267-2_31

    Chapter  Google Scholar 

  3. Monkman, G.J., Hesse, S., Ralf, S., Schunk, H.: Robot Grippers. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  4. Mirjalili, S., Dong, J.S.: Multi-Objective Optimization using Artificial Intelligence Techniques. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24835-2

    Book  Google Scholar 

  5. Rapoport, E.Y., Pleshivtseva, Y.E.: Method of multiobjective optimization of controlled systems with distributed parameters. SPIIRAS Proc. 5, 64–96 (2018). https://doi.org/10.15622/sp.60.3

    Article  Google Scholar 

  6. Neydorf, R.A., Aghajanyan, A.G.: Dual optimization of monochrome images tone approximation using parallel evolutionarily genetic search. SPIIRAS Proc. 5, 156–188 (2018). https://doi.org/10.15622/sp.60.6

    Article  Google Scholar 

  7. Meignan, D., Knust, S., Frayret, J.: A review and taxonomy of interactive optimization methods in operations research. ACM Trans. Interact. Intell. Syst. 5(3), 1–43 (2015)

    Article  Google Scholar 

  8. Srinivas, N., Deb, K.: Multiobjective function optimization using nondominated sorting genetic algorithms. IEEE Trans. Evol. Comput. 2(3), 221–248 (1994)

    Google Scholar 

  9. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  10. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1, 33–57 (2007)

    Article  Google Scholar 

  11. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: 2001 Congress on Evolutionary Computation, pp. 81–86. IEEE, Seoul (2001)

    Google Scholar 

  12. Vu, Q., Ronzhin, A.: A model of four-finger gripper with a built-in vacuum suction nozzle for harvesting tomatoes. In: Ronzhin, A., Shishlakov, V. (eds.) Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”. SIST, vol. 154, pp. 149–160. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9267-2_13

    Chapter  Google Scholar 

  13. Vu, Q., Ronzhin, A.: Models and algorithms for design robotic gripper for agricultural products. Comptes Rendus de L’Academie Bulgare des Sci. 73(1), 103–110 (2020). https://doi.org/10.7546/CRABS.2020.01.13

    Article  Google Scholar 

  14. Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary algorithms for multi-objective optimization: performance assessments and comparisons. Artif. Intell. Rev. 17, 251–290 (2002)

    Article  Google Scholar 

  15. Chambers, J.M., Cleveland, W.S., Kleiner: Graphical Methods for Data Analysis. Wadsworth & Brooks, Cole (1983)

    Google Scholar 

  16. Pavliuk, N., Smirnov, P., Kondratkov, A., Ronzhin, A.: Connecting gripping mechanism based on iris diaphragm for modular autonomous robots. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2019. LNCS (LNAI), vol. 11659, pp. 260–269. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26118-4_25

    Chapter  Google Scholar 

  17. Iakovlev, R., Denisov, A., Prakapovich, R.: Iterative method for solving the inverse kinematics problem of multi-link robotic systems with rotational joints. In: Ronzhin, A., Shishlakov, V. (eds.) Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”. SIST, vol. 154, pp. 237–251. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9267-2_20

    Chapter  Google Scholar 

  18. Saveliev, A., Pshchelko, N., Krestovnikov, K.: Method of sensitivity calculation for electrete diaphragm capacitive sensors. In: International Conference on Developments in eSystems Engineering, DeSE, pp. 721–725, Springer, Cham (2019). https://doi.org/10.1109/dese.2019.00134

  19. Krestovnikov, K.D., Cherskikh, E.O., Saveliev, A.I.: Investigation of the influence of the length of the intermediate magnetic circuit on the characteristics of magnetic gripper for robotic complexes of the mining industry. J. Min. Inst. 241(1), 46–52 (2020). https://doi.org/10.31897/pmi.2020.1.46

    Article  Google Scholar 

  20. Gorbach, N., Usina, E., Shabanova, A., Iakovlev, R.: Calculation methodology for power characteristics of electroadhesive contact for gripping conductive and dielectric objects. In: Ronzhin, A., Shishlakov, V. (eds.) Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”. SIST, vol. 154, pp. 697–705. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9267-2_58

    Chapter  Google Scholar 

Download references

Acknowledgments

The presented work was supported by the Russian Science Foundation (grant No. 16-19-00044П).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Ronzhin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vu, Q., Ronzhin, A. (2020). Algorithms of Posteriori Multi-objective Optimization for Robotic Gripper Design. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2020. Lecture Notes in Computer Science(), vol 12336. Springer, Cham. https://doi.org/10.1007/978-3-030-60337-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60337-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60336-6

  • Online ISBN: 978-3-030-60337-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics