Skip to main content

Zealots Attack and the Revenge of the Commons: Quality vs Quantity in the Best-of-n

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2020)

Abstract

In this paper we study the effect of inflexible individuals with fixed opinions, or zealots, on the dynamics of the best-of-n collective decision making problem, using both the voter model and the majority rule decision mechanisms. We consider two options with different qualities, where the lower quality option is associated to a higher number of zealots. The aim is to study the trade-off between option quality and zealot quantity for two different scenarios: one in which all agents can modulate dissemination of their current opinion proportionally to the option quality, and one in which this capability is only possessed by the zealots. In both scenarios, our goal is to determine in which conditions consensus is more biased towards the high or low quality option, and to determine the indifference curve separating these two regimes. Using both numerical simulations and ordinary differential equation models, we find that: i) if all agents can modulate the dissemination time based on the option quality, then consensus can be driven to the high quality option when the number of zealots for the other option is not too high; ii) if only zealots can modulate the dissemination time based on the option quality, whil e all normal agents cannot distinguish the two options and cannot differentially disseminate, then consensus no longer depends on the quality and is driven to the low quality option by the zealots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhat, D., Redner, S.: Nonuniversal opinion dynamics driven by opposing external influences. Phys. Rev. E 100, 050301 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  4. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

    Book  Google Scholar 

  5. Canciani, F., Talamali, M.S., Marshall, J.A.R., Bose, T., Reina, A.: Keep calm and vote on: swarm resiliency in collective decision making. In: Proceedings of Workshop Resilient Robot Teams of the 2019 IEEE International Conference on Robotics and Automation (ICRA 2019), p. 4, IEEE Press, Piscataway (2019)

    Google Scholar 

  6. Colaiori, F., Castellano, C.: Consensus versus persistence of disagreement in opinion formation: the role of zealots. J. Stat. Mech. Theory Exp. 2016(3), 1–8 (2016)

    Article  MathSciNet  Google Scholar 

  7. De Masi, G., Ferrante, E.: Quality-dependent adaptation in a swarm of drones for environmental monitoring. In: 2020 Advances in Science and Engineering Technology International Conferences (ASET). IEEE Press, Piscataway (2020, to appear)

    Google Scholar 

  8. Font Llenas, A., Talamali, M.S., Xu, X., Marshall, J.A.R., Reina, A.: Quality-sensitive foraging by a robot swarm through virtual pheromone trails. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 135–149. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_11

    Chapter  Google Scholar 

  9. Franks, N.R., Pratt, S.C., Mallon, E.B., Britton, N.F., Sumpter, D.J.T.: Information flow, opinion polling and collective intelligence in house-hunting social insects. Philos. Trans. R. Soc. B Biol. Sci. 357(1427), 1567–1583 (2002)

    Article  Google Scholar 

  10. Galam, S., Jacobs, F.: The role of inflexible minorities in the breaking of democratic opinion dynamics. Physica A 381(1–2), 366–376 (2007)

    Article  Google Scholar 

  11. Ghaderi, J., Srikant, R.: Opinion dynamics in social networks with stubborn agents: equilibrium and convergence rate. Automatica 50(12), 3209–3215 (2014)

    Article  MathSciNet  Google Scholar 

  12. Hamann, H.: Opinion dynamics with mobile agents: contrarian effects by spatial correlations. Front. Robot. AI 5, 63 (2018)

    Article  Google Scholar 

  13. Hunter, D.S., Zaman, T.: Optimizing opinions with stubborn agents under time-varying dynamics (2018)

    Google Scholar 

  14. Maitre, G., Tuci, E., Ferrante, E.: Opinion dissemination in a swarm of simulated robots with stubborn agents: a comparative study. In: A. Hussain, et al. (ed.) IEEE Congress on Evolutionary Computation, CEC 2020 (within IEEE World Congress on Computational Intelligence (WCCI) 2020). IEEE Press, Piscataway (2020, to appear)

    Google Scholar 

  15. Marshall, J.A.R., Bogacz, R., Dornhaus, A., P̃lanqué, R., Kovacs, T.,Franks, N.R.: On optimal decision-making in brains and social insect colonies. J. R. Soc. Interface 6(40), 1065–1074(2009)

    Google Scholar 

  16. Masuda, N.: Opinion control in complex networks. New J. Phys. 17, 1–11 (2015)

    Article  MathSciNet  Google Scholar 

  17. Mistry, D., Zhang, Q., Perra, N., Baronchelli, A.: Committed activists and the reshaping of status-quo social consensus. and Related Interdisciplinary TopicsPhys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(4), 1–9 (2015)

    Google Scholar 

  18. Mukhopadhyay, A., Mazumdar, R.: Binary opinion dynamics with biased agents and agents with different degrees of stubbornness. In: 28th International Teletraffic Congress (ITC28), vol. 01, pp. 261–269. IEEE, Piscataway (2016)

    Google Scholar 

  19. Prasetyo, J., De Masi, G., Tuci, E., Ferrante, E.: The effect of differential quality and differential zealotry in the best-of-\(n\) problem. In: Coello, C.A.C., et al. (ed.) Proceedings of the Twenty-second International Conference on Genetic and Evolutionary Computation (GECCO 2020). ACM, New York, NY (2020, to appear)

    Google Scholar 

  20. Prasetyo, J., De Masi, G., Ferrante, E.: Collective decision making in dynamic environments. Swarm Intell. 13(3), 217–243 (2019). https://doi.org/10.1007/s11721-019-00169-8

    Article  Google Scholar 

  21. Prasetyo, J., De Masi, G., Ranjan, P., Ferrante, E.: The best-of-n problem with dynamic site qualities: achieving adaptability with stubborn individuals. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 239–251. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_19

    Chapter  Google Scholar 

  22. Primiero, G., Tuci, E., Tagliabue, J., Ferrante, E.: Swarm attack: a self-organized model to recover from malicious communication manipulation in a swarm of simple simulated agents. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 213–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_17

    Chapter  Google Scholar 

  23. Reina, A., Dorigo, M., Trianni, V.: Towards a cognitive design pattern for collective decision-making. In: Dorigo, M., et al. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 194–205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09952-1_17

    Chapter  Google Scholar 

  24. Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro link for collective decisions: the shortest path discovery/selection example. Swarm Intell. 9(2–3), 75–102 (2015)

    Article  Google Scholar 

  25. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design pattern for decentralised decision making. PLoS ONE 10(10), e0140950 (2015)

    Article  Google Scholar 

  26. Seeley, T.D.: Honeybee Democracy. Princeton University Press, Princeton (2010)

    Google Scholar 

  27. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_6

    Chapter  Google Scholar 

  28. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017)

    Article  Google Scholar 

  29. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 Kilobots: Speed versus accuracy in binary discrimination problems. Auton. Agents Multi-Agent Syst. 30(3), 553–580 (2016)

    Article  Google Scholar 

  30. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making: The weighted voter model. In: Lomuscio, A., Scerri, P., Bazzan, A., Huhns, M. (eds.) Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2014, IFAAMAS, pp. 45–52 (2014)

    Google Scholar 

  31. Xie, J., Sreenivasan, S., Korniss, G., Zhang, W., Lim, C., Szymanski, B.K.: Social consensus through the influence of committed minorities. and Related Interdisciplinary TopicsPhys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 1–9 (2011)

    Google Scholar 

  32. Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary opinion dynamics with stubborn agents. ACM Trans. Econ. Comput. 1(4), 19:1–19:30 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Andreagiovanni Reina and Gabriele Valentini for the useful discussions on the theoretical models and the latter for the original multi-agent simulator code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia De Masi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Masi, G., Prasetyo, J., Tuci, E., Ferrante, E. (2020). Zealots Attack and the Revenge of the Commons: Quality vs Quantity in the Best-of-n. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2020. Lecture Notes in Computer Science(), vol 12421. Springer, Cham. https://doi.org/10.1007/978-3-030-60376-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60376-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60375-5

  • Online ISBN: 978-3-030-60376-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics