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Abstract

A simple drawing D(G) of a graph G is one where each pair of edges share at most one point: either
a common endpoint or a proper crossing. An edge e in the complement of G can be inserted into D(G)
if there exists a simple drawing of G+ e extending D(G). As a result of Levi’s Enlargement Lemma, if
a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines
(pseudolines), then any edge in the complement of G can be inserted. In contrast, we show that it is
NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even
if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement
of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles A and a
pseudosegment σ, it can be decided in polynomial time whether there exists a pseudocircle Φσ extending
σ for which A ∪ {Φσ} is again an arrangement of pseudocircles.

1 Introduction

A simple drawing of a graph G (also known as good drawing or as simple topological graph in the literature) is
a drawing D(G) of G in the plane such that every pair of edges shares at most one point that is either a proper
crossing or a common endpoint. In particular, no tangencies between edges are allowed and edges must not
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contain any vertices in their relative interior. It is commonly assumed that no three edges intersect in the
same point; the results in this paper are independent of this assumption. Simple drawings have received a
great deal of attention in various areas of graph drawing, for example in connection with two long-standing
open problems: the crossing number of the complete graph [37] and Conway’s thrackle conjecture [33].

In this work, we study the problem of inserting an edge into a simple drawing of a graph. Given a simple
drawing D(G) of a graph G = (V,E) and an edge e of the complement G of G we say that e can be inserted
into D(G) if there exists a simple drawing of G′ = (V,E ∪ {e}) that contains D(G) as a subdrawing.

A pseudoline arrangement is an arrangement of simple biinfinite arcs, called pseudolines, such that
every pair of pseudolines intersects in a single point that is a proper crossing. Similarly, an arrangement
of pseudocircles is an arrangement of simple closed curves, called pseudocircles, such that every pair of
pseudocircles intersects in either zero or two points, where in the latter case, both intersection points are
proper crossings. A simple drawing D(G) is called pseudolinear if the drawing of every edge can be extended
to a pseudoline such that the extended drawing forms a pseudoline arrangement. Recently, Arroyo et al.
showed that one can fully characterize these drawings by forbidden subdrawings and recognize them in
polynomial time [3]. Likewise, D(G) is called pseudocircular if the drawing of every edge can be extended
to a pseudocircle such that the extended drawing forms an arrangement of pseudocircles.

Pseudoline arrangements were introduced by Levi [30] in 1926 and have since been extensively studied;
see for example [18]. One of the most fundamental results on pseudoline arrangements, nowadays well known
as Levi’s Enlargement Lemma, stems from Levi’s original paper1. It states that, for any given pseudoline
arrangement L and any two points p and q not on the same pseudoline of L, it is always possible to
insert a pseudoline through p and q into L such that the resulting arrangement is again a valid pseudoline
arrangement.

From Levi’s Enlargement Lemma, it immediately follows that given any pseudolinear drawing D(G) and
any set E∗ of edges from G, it is always possible to insert all edges from E∗ into D(G) such that the resulting
drawing is again pseudolinear. In contrast, if the input drawing D(G) is simple, Kynčl [29] showed that not
every edge of G can be added to D(G) such that the result is again a simple drawing, not even if G is a
matching plus two isolated vertices which are the endpoints of the edge to be inserted [28]. The latter implies
that an analogous statement to Levi’s Enlargement Lemma is not true for arrangements of pseudosegments
(simple arcs that pairwise intersect at most once). Moreover, Arroyo, Derka, and Parada [4] showed that
given a simple drawing D(G) and a set E∗ of edges from G, it is NP-complete to decide whether E∗ can be
inserted into D(G) (such that the resulting drawing is again simple). However, the cardinality of E∗ required
for their hardness proof is linear in the size of the constructed graph. The main open problem posed in [4]
is the complexity of deciding whether one single given edge e of G can be inserted into D(G).

In this work, we show that this decision problem is NP-complete, even if G is a matching plus two isolated
vertices which are the endpoints of e. This implies that, given an arrangement S of pseudosegments and two
points p and q not on the same pseudosegment, it is NP-complete to decide whether it is possible to insert
a pseudosegment from p to q into S such that the resulting arrangement is again a valid arrangement of
pseudosegments (Section 2). On the positive side, we observe that the decision problem is fixed-parameter
tractable (FPT) in the number of crossings of the original drawing G (Section 5). This algorithm cannot be
directly adapted to obtain an FPT-algorithm only with respect to the number of newly created crossings.
Very recently, an overlapping set of authors showed an FPT-algorithm for this problem that is tight under the
Exponential Time Hypothesis [19]. Using a different approach that requires invoking Courcelle’s theorem [15],
the authors present an FPT-algorithm for inserting a bounded number of edges with a bounded number of
new crossings into a simple drawing G.

Snoeyink and Hershberger [39] showed the following analog to Levi’s Enlargement Lemma for arrange-
ments of pseudocircles: For any arrangement A of pseudocircles and any three points p, q, and r, not all of
them on one pseudocircle of A, there exists a pseudocircle Φ through p, q, and r such that A∪{Φ} is again an
arrangement of pseudocircles. Refining our hardness proof, we show that the edge-insertion decision problem
remains NP-complete when D(G) is a pseudocircular drawing, regardless of whether the resulting drawing

1Also known as Levi’s Extension Lemma. Several different proofs of Levi’s Enlargement Lemma have been published since
then [5, 21, 38, 39, 40].
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is required to be again pseudocircular or allowed to be any simple drawing. This holds even if we are in
addition given an arrangement of pseudocircles extending D(G). On the positive side, we show that, given
an arrangement A of pseudocircles and a pseudosegment σ, it can be decided in polynomial time whether
there exists an extension Φσ of σ to a simple closed curve such that A ∪ {Φσ} is again an arrangement of
pseudocircles (Section 4).

More related work. One of the implications of the results presented in this paper concerns so-called
saturated drawings [28]. A simple drawing D(G) of a graph G is called saturated if no edge e from G can be
inserted into D(G). Kynčl et al. showed that there are saturated simple drawings whose number of edges
is only linear in the number of vertices [28]. The currently best upper bound on the minimum number of
edges in saturated simple drawings is 7n and has been shown by Hajnal et al. [23]. A natural question is
to determine the complexity of deciding whether a simple drawing is saturated. Our hardness result implies
that the straight-forward idea of testing whether D(G) is saturated by checking for every edge in G whether
it can be inserted into D(G) is not feasible unless P = NP.

The problem of inserting an edge (or multiple edges or a star) into a planar graph has been extensively
studied in the contexts of determining the crossing number of the resulting graph [8, 36] and of finding a
drawing of the resulting graph in which the original planar graph is drawn crossing-free and the drawing of
the resulting graph has as few crossings as possible [13, 14, 22, 35]. In relation to our work, a main difference
is that we consider inserting edges into some given non-plane drawing of a graph.

Furthermore, the question considered in this paper is strongly related to work on extending partial
representations of graphs. Here, we are usually given a representation of a part of the graph G and are
asked to extend it into a full representation of G such that the partial representation is a sub-representation
of the full one. Recent years have seen a plethora of results in this topic. For plane drawings Angelini et
al. [1] showed that the problem can be solved in linear time, while Patrignani already proved earlier that the
problem is NP-complete for plane straight-line drawings [34]. For level and upward planar graph drawings
the problem was shown to be NP-complete [7, 31]. However, under certain restrictions on the graph and the
drawing, the extension problems become tractable [7, 9, 31, 32]. Very recently, also orthogonal drawings have
been considered [2]. Extension of other graph respresentations have been studied for several graph classes
defined by intersection or visibility of geometric objects [10, 11, 12, 24, 25, 26, 27]. Very recently, the extension
problem was also considered for 1-plane drawings through the lens of parameterized complexity [16, 17].

A similar extension problem was studied when the graph class considered are trees. Here, we are also
given a point-set P and ask if the given drawing can be extended using only points in P for vertex positions.
Di Giacomo et al. [20] showed that this problem is polynomial time solvable if bends are allowed. Similarly
to the case of planar graphs, Bagheri and Razzazi [6] showed that the problem is NP-complete when we
require the extended drawings to be straight-line.

Outline. The remainder of our paper is organized as follows. In Section 2 we prove that, given a simple
drawing D(G) of a graph G, it is NP-complete to decide whether a given edge e of G can be inserted into
D(G). Furthermore, we discuss under which conditions the statement holds. Most notably, in Section 3,
we show that the problem remains NP-hard even if the input drawing is pseudocircular. In contrast, we
show in Section 4 that for a given arrangement A of pseudocircles and a pseudosegment σ, we can decide
in polynomial time whether σ can be extended to simple closed curve Φσ such that A ∪ {Φσ} is again an
arrangement of pseudocircles. Finally, in Section 5, we observe that the problem of deciding whether a given
edge e of G can be inserted into a simple drawing D(G) of a graph G is FPT in the number of crossings of
D(G).

2 Inserting one edge into a simple drawing is hard

In this section we prove the following theorem containing our main result:
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Theorem 1. Given a simple drawing D(G) of a graph G = (V,E) and an edge uv of G, it is NP-complete
to decide whether uv can be inserted into D(G), even if V \ {u, v} induces a matching in G and u and v are
isolated vertices.

It is straightforward to verify that the problem is in NP (see Arroyo et al. [4] for a combinatorial description
of our problem using the dual of the planarization of the drawing). We show NP-hardness via a reduction from
3SAT. Let φ(x1, . . . xn) be a 3SAT-formula with variables x1, . . . , xn and set of clauses C = {C1, . . . , Cm}.
An occurrence of a variable xi in a clause Cj ∈ C is called a literal. For convenience, we assume that in
φ(x1, . . . , xn), each clause has three (not necessarily different) literals. In a preprocessing step, we eliminate
clauses with only positive or only negative literals via the transformation from Lemma 1.

Lemma 1. The following transformation of a clause with only positive or only negative literals, respectively,
preserves the satisfiability of the clause (y is a new variable and false is the constant value false):

xi∨xj∨xk ⇒

{
xk∨y ∨ false (i)

xi∨xj∨¬y (ii)
¬xi∨¬xj∨¬xk ⇒

{
¬xi∨¬xj∨y (iii)

¬xk∨¬y∨false (iv)

Proof. We prove the statement for the case in which the original clause has three positive literals; the other
case is analogous. Assume that xi or xj satisfies the original clause. Then it also satisfies Clause (ii) and
y can be set to true to satisfy Clause (i). If xk satisfies the original clause, then it also satisfies Clause (i)
and y can be set to false to satisfy Clause (ii). If none of xi, xj , and xk satisfy the original clause, then to
satisfy Clause (ii) we have to set y to false, which implies that Clause (i) is not satisfied.

After the preprocessing, we have a transformed 3SAT-formula where each clause is of one of the following
four types: Type (i) two positive literals and one constant false; Type (ii) one negative and two positive
literals; Type (iii) one positive and two negative literals, and finally, Type (iv) two negative literals and one
constant false.

Given a transformed 3SAT-formula φ = φ(x1, . . . , xn) with set of clauses C = {C1, . . . , Cm}, satisfiability
of φ will correspond to being able to insert a given edge uv into a simple drawing D of a matching constructed
from the formula φ. The main idea of the reduction is that the variable and clause gadgets in D act as
“barriers” inside a simple closed region R of D, in which we need to insert a simple arc γ from one side to
the other to connect u and v. Crossing a barrier in some way imposes constraints on how or whether we can
cross other barriers afterwards.

To simplify the description, we first focus our attention to the inside of the simple closed region R. We
assume that γ cannot cross the boundary of R. In the following we use two lines, named λ and µ, to bound
the regions in which a variable and clause gadget will be placed. Particularly, these lines will be identified
with opposite segments on R’s boundary.

Variable gadget. A variable gadget W is bounded from the left by a vertical line λ and from right by
a vertical line µ. Additionally, it contains a horizontal segment κ between λ and µ, a set P of pairwise
non-crossing arcs (parts of later-defined edges), each with one endpoint on κ and the other endpoint on µ,
and a set N of pairwise non-crossing arcs, each with one endpoint on κ and the other endpoint on λ. On κ,
all the endpoints of arcs in P lie above all the endpoints of arcs in N , implying that every arc in P crosses
every arc in N . Finally, we choose two points u and v such that u is below all arcs in W and v is above
them; see Figure 1 for an illustration. The arcs in P and N correspond to positive and negative appearances
of the variable, respectively.

Lemma 2. Let W be a variable gadget. Any arc between the vertical lines λ and µ that connects u and v
crosses all arcs in P or all arcs in N .

Proof. Assume that there is an arc connecting u and v neither crossing all the arcs in P nor all the arcs in N .
Hence, there are two arcs p ∈ P and n ∈ N such that this arc neither crosses p nor n. By the construction
of the gadget, p and n cross. Thus, their union together with λ and µ separates u from v. It follows that
the arc has to cross p or n.
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Figure 2: Clause gadget.

Clause gadget. Similar to a variable gadget, a clause gadget K is bounded from the left and right by
two vertical lines λ and µ, respectively. Additionally, it contains three horizontal arcs (parts of later-defined
edges) γa, γb, and γc, where the former two have one endpoint on λ and the latter has one endpoint on µ.
On λ, the endpoint of γa lies to the right of the one of γb. The other endpoints of γa, γb, and γc are called
a, b, and c, respectively. None of these three arcs cross. Moreover, K contains two points d and g and an
edge dg that crosses γa, γc, and γb in that order when traversed from d to g. Notice that we do not require
any specific rotation of the crossings of dg with γa and γb (where the rotation is the clockwise order of the
endpoints of the crossing arcs). However, to simplify the description, we assume that the rotations of the
crossings are as in Figure 2. The rotation of the crossing of dg with γc is forced by the order of the crossings
along dg. Finally, we again choose two points u and v such that u is below all arcs in K and v is above
them; see Figure 2 for an illustration.

Lemma 3. Let K be a clause gadget. Any arc uv between the vertical lines λ and µ that connects u and v
crosses either dg twice or at least one of the arcs γa, γb, and γc.

Proof. Let × be the crossing point of γc and dg. This point splits the arc dg into two arcs d× and g×.
Assume that the arc uv does not cross the arcs γa, γb, and γc. The union of γa and γc together with d×
and the lines λ and µ separates u from v. Since the arcs γa and γc are not crossed by uv, uv must cross d×
in a point ×′. Analogously, the union of γb, γc, together with g× and the lines λ and µ separates u from v.
Thus, uv has to cross g× in a point ×′′ 6= ×′ to avoid tangencies. This implies that uv crosses dg twice, a
contradiction.

The reduction. Let φ(x1, . . . , xn) be a transformed 3SAT-formula with clause set C = {C1, . . . , Cm} (each
clause being of one of the four types identified above). To build our reduction we need one more gadget.
First, we introduce the following simple drawing introduced by Kynčl et al. [28, Figure 11] and depicted in
Figure 3. Here, we denote this drawing by ©� . Following the notation by Kynčl et al., we denote its six arcs
by a1, a2, a3, b1, b2, and b3; and its eight cells by X, A1, A2, A3, B1, B2, B3, and Y ; see Figure 3 for an
illustration. The core property P of ©� is that it is not possible to insert an edge between a point in cell X
and another point in cell Y such that the result is a simple drawing [28, Lemma 15].

For our reduction, we first choose two arbitrary points u and v in the cells X and B2 and insert them
as vertices into ©� . Let ©� ′ be the obtained drawing. Further, let b∗2 be the part of the arc b2 between the
crossing point of b2 and a2 and the crossing point of b2 and b3, see again Figure 3.

Lemma 4. The edge uv cannot be inserted into ©� ′ without crossing b∗2.

Proof. Assume for contradiction that uv can be inserted not crossing b∗2 and let γuv be such an arc. Refer to
Figure 3. If γuv does not cross b2, then we would be able to prolong it and cross b2 to reach Y , a contradiction
of property P. Thus, γuv crosses b2. Further, we may assume without loss of generality that γuv does not
cross b2 inside A2 or B1, as otherwise it would be possible to modify γuv to not cross b2. Thus, γuv intersects
b2 on the boundary of B2. Since γuv cannot intersect Y , this crossing must be on b∗2.
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Figure 3: The simple drawing ©� presented
in [28]. It is not possible to insert an edge
between a point in X and one in Y .
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Figure 4: A schematic overview of the edges in F (red and
orange) and how they are combined with ©� .

The final piece we need for our reduction is a set F of mI +mIV + 4 arcs that we insert into ©� ′, where
mI is the number of clauses of Type (i) and mIV the number of clauses of Type (iv). For an arc f ∈ F
we will place one of its endpoints on a vertical line κF inside A2 and the other one inside B2; see Figure 4
for an illustration. The only crossings of f with ©� ′ are with the arcs a2, a1, b3, and b2, in that order,
when traversing f from its endpoint on κF to its endpoint in B2. Furthermore, when f is traversed in that
direction, it crosses from A2 to A1, from A1 to B3, from B3 to Y , and from Y to B2.

Consider the mI + mIV + 4 endpoints on κF sorted from top to bottom. We denote by fj the arc in
F incident with the j-th such endpoint. When traversing b2 from its endpoint in A2 to its endpoint in B1,
the crossings of arcs in F with b2 appear in the same order as their endpoints on κF . More precisely, the
crossings of b2, when b2 is traversed in that direction, are with a2, a1, b3, f1, f2, . . . , f|F |, and b1, in that
order.

The arcs fmI+1, fmI+2, fmI+3, and fmI+4 will behave differently than the other arcs in F . In the
following, we denote these four arcs by r2, r1, `1, and `2, respectively. There are only two crossings between
arcs in F , namely, between r1 and r2, and between `1 and `2, and both these crossings are inside B2. These
four crossing arcs divide B2 into three regions. Let R denote the region with b∗2 on its boundary; let Rr
denote the (other) region incident with the crossing between r1 and r2; and let R` denote the (other) region
incident with the crossing between `1 and `2. Arcs r1, r2, `1, and `2 must be drawn such that the vertex v lies
in R; see the red arcs in Figure 4 for an illustration. The precise endpoints of the edges in F \ {r1, r2, `1, `2}
will be fixed when we insert the clause gadgets.

Lemma 5. The edge uv cannot be inserted into ©� ′ without crossing every arc in F in A1 or B3 (in the
interior or common boundary of these cells).

Proof. Assume for contradiction that there is an arc f ∈ F such that uv does not cross f . From Lemma 4
we know that uv has to cross b∗2. Consider the region bounded by b∗2, b3, f , and a2. Observe that, since b∗2
is fully contained on the boundary of this region, uv has to cross at least one of the three other arcs as well.
By assumption, uv does not cross f . Crossing b3 is impossible by property P, as the part contained on this
region’s boundary separates B3 from Y . Finally, crossing the arc which is part of a2 is not possible, since
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this would imply the existence of a point v′ in A2 such that uv passes through v′ without having crossed
a2. Hence, we could prolong the arc uv′ that is part of uv by crossing a2 such that it reaches B2 without
crossing b∗2, a contradiction to Lemma 4. Thus, the statement follows.

It remains to insert inside R the clause and variable gadgets and precisely define the endpoints of arcs in
F \ {`1, `2, r1, r2}. For simplicity, we first insert the variable gadgets and then the clause gadgets. The idea
is that each clause and variable gadget is inserted in R separating b∗2 from v. This is done by identifying
the endpoints that were lying on λ or µ with points on `1, `2, r1, r2, or b2. As a result, Lemmas 2 and 3
can be applied to the arc that we insert connecting u and v in the final drawing, since it has to cross b∗2 by
Lemma 4.

We now insert the variable gadgets into R. Let W (i) be the variable gadget corresponding to variable
xi. For a gadget W (i), the arcs in N are drawn such that the endpoints on λ lie on the part of `1 that
bounds R. The arcs in P are drawn similarly, but with the endpoints on µ lying on the part of r1 that
bounds R. Moreover, we identify vertex v in the gadget with vertex v in ©� ′. Gadgets corresponding to
different variables are inserted without crossing each other. We now specify how they are inserted relative
to each other. As we traverse `1 from its endpoint on κF to its endpoint in R, we encounter the endpoints of
arcs in W (i) before the endpoints of arcs in W (i+1). Analogously, as we traverse r1 from its endpoint on κF
to its endpoint in R, we encounter the endpoints of arcs in W (i) before the endpoints of arcs in W (i+1). See
Figure 5 for an illustration.

In a similar way we insert the clause gadgets. Let K(j) be the clause gadget corresponding to clause Cj .
If Cj is of Type (i), K(j) is inserted such that the endpoints on λ lie on the part of `2 that bounds R. If Cj
is the j′-th clause of Type (i), we identify c with the endpoint of the arc fj′ . Similarly, if Cj is of Type (iv),
K(j) is inserted such that the endpoints on λ lie on the part of r2 that bounds R. If Cj is the j′-th clause
of Type (iv), we identify c with the endpoint of the arc fmI+4+j′ . If Cj is of Type (ii), K(j) is inserted such
that the endpoints on λ lie on the part of `2 that bounds R and the endpoint on µ lies on the part of r2
that bounds R. Similarly, if Cj is of Type (iii), K(j) is inserted such that the endpoint on µ lies on the part
of `2 that bounds R and the endpoints on λ lie on the part of r2 that bounds R. The crossings in R of arcs
from different clause gadgets are of arcs with an endpoint in r2 with arcs in {fj : 1 ≤ j ≤ mI}.

We now specify how different clause gadgets are inserted relative to each other. As we traverse `2 from
its endpoint on κF to its endpoint in R, we first encounter the endpoints of arcs corresponding to Type (iii)
clauses, followed by the ones corresponding to Type (ii) clauses, and finally the ones corresponding to Type (i)
clauses. Analogously, as we traverse r2 from its endpoint on κF to its endpoint in R, we first encounter
the endpoints of arcs corresponding to Type (iv) clauses, followed by the ones corresponding to Type (iii)
clauses, and finally the ones corresponding to Type (ii) clauses. Moreover, as we traverse `2 and r2 in the
specified directions, the endpoints of arcs corresponding to the j′-th clause of a certain type are encountered
before the endpoints of arcs corresponding to the (j′− 1)-st clause of this type. An illustration can be found
in Figure 5.

Finally, we connect arcs from variable and clause gadgets inside the regions R` and Rr. This is done such
that if a literal in a clause is xk then the corresponding arc in the clause gadget, that has an endpoint on
`2, is connected with an arc in N of the gadget W (k), that has an endpoint on `1. Thus, these connections
can lie in R`. Analogously, if a literal in a clause is ¬xk then the corresponding arc in the clause gadget,
that has an endpoint on r2, is connected with an arc in P of the gadget W (k), that has an endpoint on r1.
Thus, these connections can lie in Rr. Since, without loss of generality, we can assume that R` and Rr are
convex regions and the endpoints we want to connect are pairwise distinct points on the boundaries of those
regions, the connections can be drawn as straight-line segments. (For visual clarity in Figure 5 and to argue
pseudocircularity in Section 3, we draw these connections with one bend per arc.) Therefore, there is at
most one crossing between each pair of connecting arcs.

Each connecting arc is concatenated with the arcs in a variable and in a clause gadget that it joins. These
concatenated arcs are edges in our drawing that have one endpoint in a variable gadget and the other one
in a clause gadget. By construction, each such edge corresponds to a literal in the formula φ and each pair
of them crosses at most once. Similarly, the arcs in F \ {`1, `2, r1, r2} have one endpoint in a clause gadget
and also define edges in our final drawing that we denote by the same names as the corresponding arcs.
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Figure 5: Illustration of the reduction.
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We now have all the pieces that constitute our final drawing. It consists of (i) the simple drawing©� ′; (ii)
the edges fi ∈ F drawn as the described arcs (with their endpoints as vertices); (iii) the edges corresponding
to literals (with their endpoints as vertices); and (iv) the edges dg in each clause gadget (with d and g as
vertices). Observe that the constructed drawing is a simple drawing, as it is the drawing of a matching (plus
the vertices u and v) and, by construction, any two edges cross at most once.

It remains to show that the presented construction is a valid reduction.

Lemma 6. The above construction is a polynomial time reduction from 3SAT to the problem of deciding
whether an edge can be inserted into a simple drawing.

Proof. Given a 3SAT formula φ(x1, . . . , xn) with clauses C1, . . . , Cm we construct a simple drawing D as
described in Section 2 and aim to insert the edge uv into it. This construction can clearly be computed in
polynomial time and space, since only the combinatorial description of the drawing is needed.

Assume uv can be inserted into D and let uv be the resulting arc. By Lemmas 4 and 5 we know that
uv has to cross b∗2 and every arc in F . Let u∗ be the point where uv crosses b∗2. Each clause and variable
gadget separates u∗ from v and thus, Lemmas 2 and 3 can be applied. This means that in a variable gadget
W (i) all arcs in P or all arcs in N are crossed. In the former case we assign to variable xi the value true,
and otherwise the value false. Assume that this truth assignment does not satisfy φ(x1, . . . , xn). Then
there exists a clause Cj for which all three literals evaluate to false. Consider the clause gadget K(j). By
Lemma 3 we must cross in it an edge corresponding to one of its literals. However, by Lemma 5 an edge
corresponding to the constant value false cannot be crossed (again) in a clause gadget. By construction and
the truth assignment of the variables, the edges corresponding to the other literals of Cj cannot be crossed
either.

Conversely, assume we are given a satisfying assignment of φ(x1, . . . , xn). We then can insert uv into D
as follows. Starting from u, edge uv crosses a1 to enter region A1, then crosses all arcs in F , and crosses b∗2 to
enter R; see also the dotted line in Figure 5. In each clause gadget, edge uv crosses one edge corresponding
to a literal evaluating to true, none corresponding to a literal evaluating to false, and the edge dg in the
gadget if necessary. By construction, this leaves in each variable gadget all arcs either in P or in N free to
be crossed by uv. Moreover, this allows us to connect u and v without crossing any edge twice.

As our reduction from 3SAT constructs a simple drawing D(G) of a matching, the general problem is
NP-hard even if G is as sparse as possible. We remark that if we do not require G to be a matching, our
variable gadget can be simplified by identifying all the vertices on κ and removing the crossings between
edges in N and P . Moreover, from the constructed drawing D(G), one can produce an equivalent instance
that is connected: This is done by inserting an apex vertex into an arbitrary cell of the drawing, and
then subdividing its incident edges so that the resulting drawing D∗ is simple. If uv can be inserted into
D(G) then it can be inserted also into D∗. Finally, in the next section we show that the problem remains
hard even when the input drawing D(G) is a pseudocircular drawing and we are in addition given an
arrangement of pseudocircles extending D(G), regardless of whether the resulting drawing is required to be
again pseudocircular or allowed be any simple drawing.

3 Inserting one edge into a pseudocircular drawing is still hard

In this section, we show that the simple drawings produced by our reduction are actually pseudocircular.
Hence we obtain the following corollary.

Corollary 1. Given a pseudocircular drawing D(G) of a graph G = (V,E) and an edge uv of G, it is NP-
complete to decide whether uv can be inserted into D(G), even if an arrangement of pseudocircles extending
the drawing of the edges in D(G) is provided.

Proof. Let D be a drawing produced by our reduction from 3SAT. We divide the edges that correspond
to literals of the input 3SAT-formula into the blue edges and the purple edges. The former correspond to
positive literals and the latter to negative ones. Furthermore, we call the edges corresponding to constant
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(a) The drawing©� ′ extended to an arrangement of pseu-
docircles.

r1

r2

ℓ1

ℓ2

RrRℓ

R

A2

u

v

(b) Extending the red and orange edges to pseudocircles.

Figure 6: Extending the gadgets that form the frame of our reduction to an arrangement of pseudocircles.

false values the orange edges and the four edges r1, r2, `1, and `2 the red edges. For each clause gadget we
find one edge that is not corresponding to a literal or constant false value; we call all these edges the black
edges. Finally, we call the edges in the subdrawing ©� in D the green edges.

To complete D into an arrangement of pseudocircles we have to close every blue, purple, black, orange,
red, and green edge by a corresponding extension. For the six green edges this can be done as shown in
Figure 6a. The orange and red edges are partitioned into two groups. The first one contains r1, r2 and the
orange edges corresponding to false values in clauses of Type (i). The second one contains `1, `2 and the
orange edges corresponding to false values in clauses of Type (iv). Inside the region R, for both groups
the red and the orange extensions are drawn as parallel, pairwise non-intersecting curves between their
endpoints in R and the boundary of the region A2; see Figure 6b. Additionally, also inside R, for each group
the extensions of the two red edges cross all the orange edges in the group. Moreover, the clause gadgets
are essentially placed between the red extensions. Inside the region A2, for each group the extensions of the
two red edges cross and the orange extensions cross the red ones; see again Figure 6b.

We close the black edges with black extensions by just connecting the endpoints of a black edge without
producing any additional crossings with the edges of D or with the extensions defined so far. It remains to
extend the purple and the blue edges. An example of a fully extended drawing D can be seen in Figure 7.
The purple and blue extensions are essentially horizontally mirrored copies of their corresponding edges.
In particular, two purple or blue extensions cross if and only if the corresponding purple or blue edges
cross. Moreover, inside the region R, the purple and the blue extensions are drawn without crossings. As
we traverse `1 from its endpoint in A2 to its endpoint in R, we encounter the (crossing points of) purple
extensions of arcs in W (i) after the blue arcs in W (i−1) and before the blue arcs in W (i). Analogously,
as we traverse r1 from its endpoint in A2 to its endpoint in R, we encounter the (crossing points of) blue
extensions of arcs in W (i) after the purple arcs in W (i−1) and before the purple arcs in W (i). Furthermore,
as we traverse `2 from its endpoint in A2 to its endpoint in R, we encounter the (crossing points of) purple
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extensions before the blue arcs. Similarly, as we traverse r2 from its endpoint in A2 to its endpoint in R, we
encounter the (crossing points of) blue extensions before the purple arcs.

Let D◦ be the arrangement of closed curves constructed from D. It remains to prove that D◦ is an
arrangement of pseudocircles. We consider the pseudocircles in D◦ to have the same color as the edges
and extensions that define them. We first show that we can deform the purple, blue, black, red, and orange
pseudocircles in D◦ such that they are all axis-aligned rectangles and the pairwise intersections are preserved.
Then, to show that two of these rectangles cross at most twice we make use of the next observation:

Observation 1. Let �1 and �2 be two axis-aligned rectangles whose vertices lie in general position (no
three are collinear). If the leftmost and rightmost points of the projection of �1 ∪�2 into the horizontal (or
vertical) axis correspond to different rectangles, then �1 and �2 cross in at most two points.

We will show that all pseudocircles in D◦ except the green ones can be deformed to axis-aligned rectangles
while maintaining their intersections with other pseudocircles. We refer to Figure 7.

By construction, the red and orange pseudocircles extending the edges in the group of red and orange
ones that contains r1 and r2 can be drawn directly as axis-aligned rectangles. See the the red and orange
pseudocircles on the right side of Figure 7. We deform (the bottom part of) the other orange and red
pseudocircles such that the resulting pseudocircles are axis-aligned rectangles. This can easily be done by
also deforming part of the subdrawing ©� ′ of D◦.

The purple pseudocircles can be drawn directly as axis-aligned rectangles. A black pseudocircle Φ extend-
ing a black edge e can trivially be drawn as an axis-aligned rectangle such that Φ only crosses pseudocircles
extending edges that cross e.

We now deform the blue pseudocircles. The blue extensions as described above can be drawn such
that the resulting blue pseudocircles are axis-aligned polygons with one reflex corner (between `1 and r1).
For a blue pseudocircle Φ drawn in this way, let the corner point be the reflex vertex of the polygon and
let the horizontal and vertical sides incident with it be the horizontal corner-arc and the vertical corner-
arc of Φ, respectively. To make a blue pseudocircle an axis-aligned rectangle, we deform it by moving its
corner point; see Figure 8. Obviously, this does not change the crossings with any green, black, red, or
orange pseudocircle. Furthermore, it does not change the crossings with other blue pseudocircles as no new
crossings are introduced and the crossings along the horizontal corner-arc are preserved. Finally, in the
same way, this deformation preserves the crossings between the blue pseudocircle and purple ones along the
vertical corner-arc.

Consider the deformed drawing obtained from D◦ maintaining all intersections. We now argue that each
two pseudocircles cross either zero or two times in this deformed drawing and hence in D◦. To show that no
two blue (or no two purple) rectangles cross more than twice we consider their projection onto the vertical
axis. Then, by construction, two rectangles cross if and only if the topmost and the bottommost points of
the projection correspond to different rectangles; see Figure 8a. Thus, by Observation 1, in case the two
rectangles cross they cross twice. For a blue and a purple pseudocircle we find that their projection to the
horizontal axis is always such that the left-most point belongs to the purple extension and the right-most
point to the blue extension by construction; see Figure 8b for an illustration. From Observation 1 it follows
that each pair of blue and purple rectangles crosses at most twice.

In the same manner we can argue about the red and orange rectangles. By construction, two orange
rectangles do not cross. A red and an orange rectangle are either disjoint (if they extend edges in different
groups of red and orange ones) or the leftmost and rightmost points of their projection onto the horizontal
axis correspond to different rectangles. Thus, from Observation 1 it follows that each pair of red and orange
rectangles crosses at most twice. Similarly, given a red or orange rectangle and a purple or blue one, the
leftmost and rightmost points of their projection onto the horizontal axis correspond to different rectangles.
Thus, by Observation 1, they cross at most twice.

Given two rectangles, one of them black, their projection onto the horizontal or the vertical axis shows
that either they do not cross or, by Observation 1, they cross at most twice. Finally, it is easy to verify that no
red, orange or green pseudocircle crosses a green pseudocircle more than twice. Since by construction no other
pseudocircle crosses a green pseudocircle, we conclude that D◦ is in fact an arrangement of pseudocircles.
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Figure 7: The drawing produced by our reduction is pseudocircular.
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(a) Blue pseudocircles. (b) Blue and purple pseudocircles.

Figure 8: Interactions between the blue and the purple pseudocircles.

4 Extending an arrangement of pseudocircles is easy

In Section 2 we proved that deciding whether an edge can be inserted into a pseudocircular drawing such
that the result is a simple (or a pseudocircular) drawing is hard. In this section we focus on extending
arrangements of pseudocircles instead of drawings of graphs. Recall that in such an arrangement the restric-
tion is that two pseudocircles can cross at most twice while in a simple drawing the restriction is that two
edges share at most one point. The main difference in extending arrangements of pseudocircles and simple
pseudocircular drawings is that in the latter the crossing possibilities are more restricted: the edge parts of
two pseudocircles cannot cross twice.

Snoeyink and Hershberger [39] showed that given an arrangement A of pseudocircles and three points,
not all three on the same pseudocircle, one can find a pseudocircle Φ through the three points such that
A ∪ {Φ} is again an arrangement of pseudocircles. Now, given any arrangement A and a pseudosegment
σ intersecting each pseudocircle in A at most twice, it is not always possible to extend σ to a pseudocircle
Φσ ⊃ σ such that A∪{Φσ} is again an arrangement of pseudocircles. Two examples are shown in Figures 9
and 10. In both examples any pseudocircle Φσ extending σ crosses one red or blue pseudocircle at least four
times. We show in the following that the extension decision question can be answered in polynomial time:

Theorem 2. Given an arrangement A of n pseudocircles and a pseudosegment σ intersecting each pseudo-
circle in A at most twice, it can be decided in time polynomial in n whether there exists an extension of σ
to a pseudocircle Φσ such that that A ∪ {Φσ} is an arrangement of pseudocircles.

An arrangement (of pseudocircles) partitions the plane into vertices (0-dimensional cells), edges (1-
dimensional cells), and faces (2-dimensional cells). Since tangencies are not allowed, all vertices are proper
crossings. Note that an arrangement of n pseudocircles has O(n2) complexity. Two arrangements are
combinatorially equivalent (or, isomorphic) if the corresponding cell complexes are isomorphic, that is, if
there is an incidence- and dimension-preserving bijection between their cells. The extention problem does
not depend on the particular geometry of the arrangement, only on the combinatorial equivalence class.
Therefore, we can assume that the input is this combinatorial description (of polynomial size in n).

σ

Figure 9: Obstruction where all pseudocircles inter-
sect σ twice.

σ

Figure 10: Obstruction where one pseudocircle in-
tersects σ only once.
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(a) Initial arrangement of pseudocircles A and pseu-
dosegment σ.

u vσ
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(b) Simply-connected subset R0.
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R1

(c) Simply-connected subset R1.
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σ′
1
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σ

Rm

(d) Simply-connected subset Rm and two possible exten-
sions σ′

1 and σ′
2.

Figure 11: Algorithm extending σ to a pseudocircle Φσ.

of Theorem 2. Throughout this proof we write R := R2 \R for the complement of a set R ⊆ R2. By possibly
transforming A into an isomorphic arrangement while preserving the incidences of σ, we can assume without
loss of generality that an endpoint is incident with the unbounded cell and that the intersection points of σ
with the pseudocircles in A are all proper crossings. Further, by possibly transforming the arrangement
again into an isomorphic one, we can assume that σ is a horizontal segment with the left endpoint incident
with the unbounded cell. Let u and v be the left and right endpoints of σ, respectively. Our algorithm aims
to compute a pseudocircle Φσ = σ ∪ σ′ such that A∪{Φσ} is an arrangement of pseudocircles, or determine
that no such σ′ exists. We call σ′ an extension of σ.

We partition the set of pseudocircles of A into three sets C0, C1, and C2, where for each i ∈ {0, 1, 2}, Ci
is the set of pseudocircles in A crossing σ exactly i times. Note that u lies outside all pseudocircles φ ∈ A
while v lies outside of all φ ∈ C0 ∪ C2 and inside all φ ∈ C1, that is, each φ ∈ C1 separates u and v. Further,
an extension σ′ must not cross any φ ∈ C2, it needs to cross every φ ∈ C1 exactly once, and it can cross each
φ ∈ C0 either twice or not at all.

The idea is to construct a finite sequence R0 ⊂ R1 ⊂ . . . of closed subsets of R2, each consisting of cells
of A ∪ σ that cannot be reached by σ′. Figure 11 illustrates this idea as well as various cases throughout
the proof. Each set Ri will be a simply connected closed region of R2 with both u and v on its boundary.
Further, we will maintain the following invariant :

For each Ri and each φ ∈ C0, int(φ) ∩Ri is either a connected region or empty,

where int(φ) denotes the interior of the bounded area enclosed by φ. The construction will either end by
determining that σ cannot be extended, or with a set Rm such that routing σ′ closely along the boundary
of Rm gives a valid extension of σ.

Let R′0 be the union of σ and all the closed disks bounded by the pseudocircles in C2 and consider the
faces induced by R′0. Since u is incident with the unbounded cell of R′0, and since σ′ must not intersect the
interior of R′0, σ′ cannot reach any bounded face of R′0. Let R0 be the closure of the union of these bounded
faces and σ. We may assume that v ∈ ∂R0, as otherwise no extension σ′ exists and we are done.

To see that the invariant holds for R0, assume that there exists a pseudocircle φ ∈ C0 such that int(φ)∩R0

is connected; see Figure 12 for an illustration. Note that int(φ) ∩ R0 is connected if and only if R0 \ int(φ)
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Figure 12: Proving that R0 fulfills the invariant.

is connected. As φ does not intersect σ, there exists a component D of R0 \ int(φ) that is disjoint from
σ. Further, as int(φ) is simply connected, D ∩ ∂R0 6= ∅. Moreover, any point x on ∂D ∩ ∂R0 lies on some
pseudocircle φx ∈ C2. On the other hand, any path in R0 from a point of σ to x must enter and leave int(φ)
and hence intersect φ at least twice. As φx intersects σ twice and lies in R0, we get that φx intersects φ in
at least four points, a contradiction.

For the iterative step, consider the arrangement Aφi formed by ∂Ri and a pseudocircle φ ∈ C0 ∪ C1, and
the cells of it that lie in Ri. If φ ∈ C1 and an extension σ′ exists, then the only two such cells that can
be intersected by σ′ are the ones incident to u and v, respectively. Similarly, if φ ∈ C0, then σ′ can only
intersect the cell(s) incident to u and v, plus the (by the invariant) unique cell int(φ) ∩ Ri. In both cases,

all other cells of this arrangement should be added to the forbidden area. We denote all cells Aφi ∩ Ri that
can possibly be intersected by σ′ as reachable (by σ′) and all other cells as unreachable (by σ′).

Assume that there exists some pseudocircle φ ∈ C0 ∪ C1 such that the arrangement Aφi of φ and ∂Ri
contains unreachable cells. Then we obtain R′i+1 by adding all those cells to Ri. If v lies in a bounded

region of R′i+1, then no extension σ′ exists and we are done. (Recall that by assumption u always lies in
the unbounded region.) Otherwise, Ri+1 = R′i+1 is a simply connected region that has both u and v on its
boundary. It remains to show that the invariant is still maintained for Ri+1.

Lemma 7. If Ri fulfills the invariant and u and v both lie in the unbounded region of R′i+1 then Ri+1 also
fulfills the invariant.

Proof. Let φ ∈ C0 ∪ C1 be the pseudocircle that causes the step from Ri to Ri+1 and consider the arrange-
ment Aφi of φ and ∂Ri (which contains unreachable cells). Note that the boundaries of all cells of Aφi
alternate between arcs of φ and parts of ∂Ri. Moreover, all cells of Aφi in Ri+1 \Ri are bounded.

We first consider the case that φ ∈ C0. It is illustrated in Figure 13a. Suppose that there exits a
pseudocircle φ′ ∈ C0 for which int(φ′) ∩ Ri+1 is disconnected while int(φ′) ∩ Ri is connected. Observe that

φ′ 6= φ because all the cells of Aφi that are added to Ri for obtaining Ri+1 lie outside φ. Since Ri fulfills the

invariant, each cell of Aφi in Ri+1 \Ri is bounded by a single arc of φ and a single arc of ∂Ri and all those
cells are pairwise disjoint. Hence there exists at least one such cell c that disconnects int(φ′) ∩ Ri, and the
boundary of c along φ intersects φ′ (at least) twice. Recall that c is bounded and to the exterior of φ. If φ′

was only intersecting φ at those two points, the boundary of φ′ outside c would be completely contained in
int(φ), but then c would not disconnect int(φ′) ∩Ri. Thus, φ must intersect φ′ in at least two more points,
a contradiction.

Now consider the case φ ∈ C1. For an illustration consider Figure 13b. Assume again that there exists a
pseudocircle φ′ ∈ C0 for which int(φ′)∩Ri+1 is disconnected while int(φ′)∩Ri is connected. Consider again

a cell c of Aφi that is part of Ri+1 \Ri and disconnects int(φ′)∩Ri. The cell c must not contain any of u and
v as otherwise it would not be in Ri+1. Further, the cell c cannot separate u and v, as otherwise v would
have been in a bounded region of R′i+1 and we would have stopped the process. As c disconnects int(φ′)∩Ri,
φ intersects φ′ twice along the boundary of c (and hence outside Ri). As every pair of pseudocircles have
at most two intersection points, φ does not intersect φ′ in any other points. Especially, φ does not intersect
φ′ inside Ri. Furthermore, φ intersects ∂Ri in int(φ′) at least twice along ∂c (causing the disconnection of
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Figure 13: Illustration of potentially separating cells in the proof of Lemma 7. The red arc and area belong
to φ′ ∈ C0, the blue striped area is the cell c, the blue curve is the pseudocircle φ ∈ C0 ∪ C1.

int(φ′) ∩Ri) and φ also intersects ∂Ri outside of φ′ (as it must intersect σ and φ′ cannot intersect σ). This
last property implies that each component of int(φ′) ∩Ri+1 induced by c lies in a different reachable cell of

Aφi that is neighboring to c via an arc of φ. However, as c does not separate u and v, at most one such cell
can exist, a contradiction to int(φ′) ∩Ri+1 being disconnected.

Now assume that both u and v lie on the boundary of all sets Ri constructed in this way. Then the
iterative process stops with a set Rm where for each φ ∈ C0 ∪ C1, all cells in the arrangement Aφm of φ and
∂Rm that are contained in Rm are reachable by σ′. Note that m = O(n2) as A has O(n2) cells, in every
iteration i at least one cell of A has been added to Ri, and each cell of A is added at most once. Consider a
path P from u to v in Rm that is routed closely along the boundary ∂Rm (note that there are two different
such paths). Then for any φ ∈ C1, P intersects exactly two cells of Aφm, namely, the ones incident to u and v,
respectively. Hence P crosses φ exactly once. Similarly, for any φ ∈ C0, the path P intersects at most three
cells of Aφm, namely, the one(s) incident to u and v plus possibly the cell int(φ) ∩ Rm, which is one cell by
the invariant. Hence P crosses φ at most twice. Thus σ′ = P is a valid extension for σ, which completes the
correctness argument.

Note that computing R0 and σ′ (in case that the algorithm didn’t terminate with a negative answer
before) can be done in polynomial time. Also, for each Ri and each φ ∈ C0 ∪ C1, the set of unreachable cells

of Aφi can be determined in polynomial time. As we have O(n2) iteration steps, we can hence compute Rm
from R0 (or determine that σ is not extendible) in polynomial time, which concludes the proof.

As an immediate consequence of Theorem 2 we have the following result:

Corollary 2. Given an arrangement A pseudocircles and a pseudosegment σ, it can be decided in polyno-
mial time whether σ can be extended to a pseudocircle Φσ ⊃ σ such that A ∪ {Φσ} is an arrangement of
pseudocircles.

5 An FPT-algorithm for bounded number of crossings

In this section we show that for drawings with a bounded number of crossings it can be decided in FPT-time
whether an edge can be inserted. Given a simple drawing D(G) with k crossings, one can construct a kernel
of size O(k) by exhaustively removing isolated vertices and uncrossed edges from D(G). For a simple drawing
D(G) of a graph G = (V,E) and e ∈ E, let D(G− e) be the subdrawing of D(G) without the drawing of e.
Similarly, for an isolated vertex u ∈ V let D(G− u) be the subdrawing of D(G) without the drawing of u.

Observation 2. Given a simple drawing D(G) of a graph G = (V,E) and an isolated vertex w ∈ V , an
edge uv of G can be inserted into D(G) if and only if uv can be inserted into D(G− w).

By Observation 2 we get that isolated vertices can be disregarded in an algorithm that extends a simple
drawing D(G) of a graph by one edge. The following lemma implies that the same is true for uncrossed
edges in D(G).
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Figure 14: Rerouting uv when it crosses an otherwise uncrossed edge more than once.

Lemma 8. Given a simple drawing D(G) of a graph G = (V,E) and an edge e ∈ E that is uncrossed in
D(G), an edge uv of G can be inserted into D(G) if and only if uv can be inserted into D(G− e).

Proof. Since D(G− e) is a subdrawing of D(G), it is clear that if uv can be inserted into D(G) then it can
be inserted into D(G − e). Suppose that uv can be inserted into D(G − e) and let γ be a valid drawing of
uv in D(G− e), that is, one resulting in a simple drawing of G \ {e} ∪ {uv}. We orient γ from u to v. If γ is
not a valid drawing of uv in D(G) then it must intersect e more than once in D(G). We can modify γ such
that it is routed close to e between its first and last intersection with e, producing at most one intersection;
see Figure 14 for an illustration. If e is not incident to u or v we are done. Else assume without loss of
generality that e is incident to u and let γ′ be the drawing of uv that was modified such that it has only one
intersection with e. Recall that e is uncrossed in D(G). Hence, the intersection point × of γ′ with e and
the point u lie on the boundary of one cell in D(G). Consequently, we can modify γ′ in such a way that it
is routed closely to e from u to × on the side of e on which γ′ continues to v without producing a crossing
with any other edge in D(G). Either modification only reduces crossings, but does not introduce new ones,
hence we obtained a valid drawing of uv in D(G) as desired.

Equipped with Observation 2 and Lemma 8 we are ready to prove the main theorem of this section.

Theorem 3. Given a simple drawing D(G) of a graph G = (V,E) and an edge uv of G, there is an
FPT-algorithm in the number k of crossings in D(G) for deciding whether uv can be inserted into D(G).

Proof. Let G′ be the subgraph of G remaining after exhaustively deleting uncrossed edges and isolated
vertices distinct from u and v. Furthermore, let D′(G′) be the corresponding subdrawing of D(G). By
assumption, there are at most 2k crossed edges in G. Hence G′ has at most 4k + 2 vertices and 2k edges.
Furthermore, by Observation 2 and Lemma 8 we can insert uv into D(G) if and only if it can be inserted
into D′(G′).

For solving the kernel instance of inserting uv into D′(G′), we reformulate the problem of inserting an
edge into a simple drawing as a problem in the dual graph of its planarization, as in [4]. In the planarization
crossings are replaced by vertices resulting in a plane drawing. Given a simple drawing D(G) of a graph G,
the dual graph G∗(D) is the plane dual of the planarization of D(G). Thus, every vertex in G∗(D) corresponds
to a cell in D(G) and every edge in G∗(D) corresponds to a segment of an edge in D(G). We assign to
each edge in D(G) a different color (label) and define a coloring χ of the edges of G∗(D), where every edge
in G∗(D) inherits the color of its primal edge in D(G). Given two vertices u, v ∈ V , let G∗(D, {u, v}) be
the subgraph of G∗(D) obtained by removing from it the edges corresponding to segments of edges incident
with u or to v. Let χ′ denote the coloring of the edges of G∗(D, {u, v}) that coincides with χ in every edge.
The problem of extending D(G) with one edge uv is then equivalent to the problem of finding a path in
G∗(D, {u, v}) between a vertex corresponding to a cell incident with u and a vertex corresponding to a cell
incident with v in which no color given by χ is repeated (that is, the path is heterochromatic).

The number of segments of crossed edges in D′(G′) is at most 4k. Thus, G∗(D′, {u, v}) has at most 4k
edges (while the number of vertices might not be bounded by a function of k). There are O(n) cells in D′(G′)
with u or v on their boundary. Further, every cell in D′(G′) has complexity O(k). Checking whether uv can
be inserted into D′(G′) can be done by (i) checking for each of the O(n) vertices in G∗(D′, {u, v}) whether
both u and v are incident to the according cell in D′(G′) and (ii) checking for each of the O(24k) non-empty
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subsets of edges in G∗(D′, {u, v}) whether they form a valid heterochromatic path with endpoints incident
to u and v, respectively. Altogether, this can be done (brute-force) in O(nk + k224k) time.

6 Conclusions

In this paper we showed that given a simple drawing D(G) of a graph G it is NP-hard to decide if a particular
edge from the complement of G can be inserted into D(G) such that the result is a simple drawing. On the
positive side, we showed that for a given pseudocircular arrangement A of pseudocircles and a pseudosegment
σ it can be decided in polynomial time whether σ can be extended to a simple closed curve Φσ such that
A ∪ {Φσ} is again an arrangement of pseudocircles. Furthermore, we proved that the problem is FPT with
respect to the number of crossings of D(G).

In the light of our results, checking whether a simple drawing D(G) is saturated by trying to insert every
edge of the complement of G is hopeless (unless P = NP). Thus, it is an interesting open problem whether
there is a polynomial algorithm for deciding if a simple drawing is saturated.
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