Skip to main content

Bitonic st-Orderings for Upward Planar Graphs: The Variable Embedding Setting

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2020)

Abstract

Bitonic st-orderings for st-planar graphs were recently introduced as a method to cope with several graph drawing problems. Notably, they have been used to obtain the best-known upper bound on the number of bends for upward planar polyline drawings with at most one bend per edge. For an st-planar graph that does not admit a bitonic st-ordering, one may split certain edges such that for the resulting graph such an ordering exists. Since each split is interpreted as a bend, one is usually interested in splitting as few edges as possible. While this optimization problem admits a linear-time algorithm in the fixed embedding setting, it remains open in the variable embedding setting. We close this gap in the literature by providing a linear-time algorithm that optimizes over all embeddings of the input st-planar graph.

The best-known lower bound on the number of required splits of an st-planar graph with n vertices is \(n-3\). However, it is possible to compute a bitonic st-ordering without any split for the st-planar graph obtained by reversing the orientation of all edges. In terms of upward planar polyline drawings, the former translates into \(n-3\) bends, while the latter into no bends. We show that this idea cannot always be exploited by describing an st-planar graph that needs at least \(n-5\) splits in both orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelini, P., Bekos, M.A., Liotta, G., Montecchiani, F.: Universal slope sets for 1-bend planar drawings. Algorithmica 81(6), 2527–2556 (2019). https://doi.org/10.1007/s00453-018-00542-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Trans. Comput. 49(8), 826–840 (2000). https://doi.org/10.1109/12.868028

    Article  MathSciNet  MATH  Google Scholar 

  3. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998). https://doi.org/10.1016/S0925-7721(97)00026-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Chaplick, S., et al.: Planar L-drawings of directed graphs. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 465–478. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_36

    Chapter  Google Scholar 

  5. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996). https://doi.org/10.1007/BF01961541

    Article  MathSciNet  MATH  Google Scholar 

  6. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996). https://doi.org/10.1137/S0097539794280736

    Article  MathSciNet  MATH  Google Scholar 

  7. Even, S., Tarjan, R.E.: Computing an st-numbering. Theor. Comput. Sci. 2(3), 339–344 (1976). https://doi.org/10.1016/0304-3975(76)90086-4

    Article  MathSciNet  MATH  Google Scholar 

  8. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990). https://doi.org/10.1007/BF02122694

    Article  MathSciNet  MATH  Google Scholar 

  9. Gronemann, M.: Bitonic st-orderings of biconnected planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 162–173. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_14

    Chapter  Google Scholar 

  10. Gronemann, M.: Bitonic st-orderings for upward planar graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 222–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_18

    Chapter  Google Scholar 

  11. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44541-2_8

    Chapter  Google Scholar 

  12. Harel, D., Sardas, M.: An algorithm for straight-line drawing of planar graphs. Algorithmica 20(2), 119–135 (1998). https://doi.org/10.1007/PL00009189

    Article  MathSciNet  MATH  Google Scholar 

  13. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996). https://doi.org/10.1007/BF02086606

    Article  MathSciNet  MATH  Google Scholar 

  14. Otten, R.H.J.M., van Wijk, J.G.: Graph representations in interactive layout design. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 914–918 (1978)

    Google Scholar 

  15. Rettner, C.: Flipped bitonic st-orderings of upward plane graphs. Bachelor’s thesis, University of Würzburg (2019). https://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2019-rettner-bachelor.pdf

  16. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom. 1(4), 343–353 (1986). https://doi.org/10.1007/BF02187706

    Article  MathSciNet  MATH  Google Scholar 

  17. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete Comput. Geom. 1(4), 321–341 (1986). https://doi.org/10.1007/BF02187705

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Michael Kaufmann and Antonios Symvonis for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Bekos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angelini, P., Bekos, M.A., Förster, H., Gronemann, M. (2020). Bitonic st-Orderings for Upward Planar Graphs: The Variable Embedding Setting. In: Adler, I., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), vol 12301. Springer, Cham. https://doi.org/10.1007/978-3-030-60440-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60440-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60439-4

  • Online ISBN: 978-3-030-60440-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics