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Abstract

If a biconnected graph stays connected after the removal of an arbi-

trary vertex and an arbitrary edge, then it is called 2.5-connected. We

prove that every biconnected graph has a canonical decomposition into

2.5-connected components. These components are arranged in a tree-

structure. We also discuss the connection between 2.5-connected com-

ponents and triconnected components and use this to present a linear

time algorithm which computes the 2.5-connected components of a graph.

We show that every critical 2.5-connected graph other than K4 can be

obtained from critical 2.5-connected graphs of smaller order using sim-

ple graph operations. Furthermore, we demonstrate applications of 2.5-

connected components in the context of cycle decompositions and cycle

packings.

1 Introduction

Over the years, connectivity has become an indispensable notion of graph theory.
A tremendous amount of proofs start with a reduction which says “The main
result holds for all graphs if it holds for all sufficiently connected graphs.” Here,
sufficiently connected stands for some measure of connectedness as, for exam-
ple, biconnected, 4-edge-connected, vertex-edge-connected, or just connected.
Usually, first a reduction from the desired statement for general graphs to suf-
ficiently connected graphs is proven. Then the subsequent section starts with
a sentence of the following manner: “From now on, all considered graphs are
sufficiently connected.” For example, it is shown in [Tut54] that the Tutte poly-
nomial is multiplicative over the biconnected components of a considered graph.
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agreement No. 820148).

†Eva Schmidt was partially funded by the Federal Ministry of Education and Research
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Another reduction to components of higher connectivity is that finding a planar
embedding can be reduced to embedding the triconnected components of the
graph, cf. [ML37].

connected after unique tree-structured example of
removal of components components an application

connected — ✓ ✗ various

biconnected 1 vertex ✓ ✓ Tutte polynomial

2.5-connected 1 edge + 1 vertex ✓ ✓ cycle decomposition

triconnected 2 vertices ✓ ✓ planarity test

Table 1: 2.5-connectivity as an intermediate connectivity measure.

By far the largest part of the existing literature treats either k-connectivity
(where, loosely speaking, graphs which stay connected even if k − 1 vertices
are removed are considered) or k-edge connectivity (where graphs which stay
connected even if k − 1 edges are removed are considered). We speak of mixed
connectivity, when graphs are regarded which stay connected after k vertices
and l edges are removed. This measure of connectivity has only rarely been
studied. We refer the reader to [BWO12] for a brief survey of mixed connectivity.
In [HS19] it is shown that the behaviour of cycle decompositions is preserved
under splits at vertex-edge separators (that is, a vertex and an edge whose
removal disconnects the graph).

Our contribution We introduce a canonical decomposition of a graph into
its 2.5-connected components, where a graph is 2.5-connected if it is biconnected
and the removal of a vertex and an edge does not disconnect the graph. We
prove the following decomposition theorem.

Theorem 1 (Decomposition into 2.5-connected components). Let G be a bicon-
nected graph. The 2.5-connected components of G are unique and can be com-
puted in linear time.

Furthermore, we demonstrate that the behaviour of critical 2.5-connected
graphs is preserved in their triconnected components. We obtain a result similar
to Tutte’s decomposition theorem for 3-connected 3-regular graphs: all critical
2.5-connected graphs other than K4 can be obtained from critical 2.5-connected
graphs of smaller order by simple graph operations.

Finally, we show that the minimum (maximum) cardinality of a cycle decom-
position of an Eulerian graph can be obtained from the minimum (maximum)
cardinalities of the cycle decompositions of its 2.5-connected component. This
gives new insights into a long standing conjecture of Hajós.

Techniques We demonstrate that 2.5-connected components can be defined
in the same manner as triconnected components. The novel underlying idea of
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the present article is a red-green-colouring of the virtual edges of the tricon-
nected components (a virtual edge of a component is not part of the original
graph but stores the information where the components need to be glued to-
gether in order to obtain the host graph). The colouring is assigned to the
virtual edges during the process of carrying out splits that give the triconnected
components. It preserves the information whether a virtual edge could arise in
a sequence of 2.5-splits (those corresponding to a vertex-edge separator). If so,
the edge is coloured green, otherwise red. We prove that this colouring can be
assigned to the virtual edges of the triconnected components (without knowl-
edge of the splits that led there) in linear time. It can be exploited to obtain
2.5-connected components: glue the red edges. We show that the uniqueness of
the red-green-colouring implies the uniqueness of the 2.5-connected components.

Further Related Work We refer to [Tut66] as a standard book on graph
connectivity. The same topic is considered from an algorithmic point of view
in [NI08]. A short overview on mixed connectivity with strong emphasis on
partly raising Menger’s theorem to mixed separators can be found in Chapter
1.4 of [BWO12]. Grohe [Gro16] introduces a new decomposition of a graph
into quasi-4-connected components and discusses the relation of the quasi-4-
connected components to triconnected components.

The importance of triconnected components for planarity testing was already
observed in [ML37]. Hopcroft and Tarjan [HT73] proved that these components
are tree-structured and exploited this algorithmically. On this basis, Battista
and Tamassia [dBT96] developed the notion of SPQR-trees. Gutwenger and
Mutzel [GM00] used this result and the results of [HT73] for a linear-time al-
gorithm that computes the triconnected components of a given graph and their
tree-structure (SPQR-tree).

Outline Preliminary results and definitions are introduced in the next sec-
tion. In particular, Hopcroft and Tarjan’s notions of triconnected components
and virtual edges (cf. [HT73]) are explained. In Section 3 we adapt the definition
of triconnected components in order to give a natural definition of 2.5-connected
components. We prove that these are unique and show how they can be obtained
from the triconnected components. We exploit this knowledge in Section 4 in
order to give a linear time algorithm which computes the 2.5-connected com-
ponents of a given graph. We characterize the critical 2.5-connected graphs in
Section 5. Finally, some applications of 2.5-connected graphs are discussed in
Section 6.

2 Preliminaries

If not stated otherwise, we use standard graph theoretic notation as can be found
in [Die00]. Graphs are finite and may contain multiple edges but no loops. A
graph of order 2 and size k ≥ 2 is a multiedge (or k-edge). In this article a
graph G is equipped with an injective labelling ℓG := EV → N where EV is a
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(possibly empty) subset of E(G). We call EV (G) := EV the virtual edges of G.
If G is described without a labelling, then we implicitly assume EV (G) = ∅.

Most of the notation and all of the results in this paragraph are borrowed
from [HT73]. A connected graph is biconnected if for each triple of distinct
vertices (u, v, w) ∈ V (G)3 there exists a u-v-path P in G with w /∈ V (P ).∗

Let u and v be two vertices of a biconnected graph G. We divide E(G) into
equivalence classes E1, E2, . . . , Ek such that two edges lie in the same class if and
only if they are edges of a (possibly closed) subpath of G which neither contains
u nor v internally. The classes Ei are the separation classes of G with respect
to {u, v}. The set {u, v} is a separation pair if there exists a set I ( {1, . . . , k}
such that E′ :=

⋃
i∈I Ei satisfies min{|E′|, |E(G) \ E′|} ≥ 2. In this case, let

G1 := G[E′] + e1 and G2 := G[E(G) \ E′] + e2, where both, e1 and e2, are new
edges with endvertices u and v. Fix some x ∈ N \ lG(EV (G)). For i ∈ {1, 2}
let ℓGi

: (EV (G) ∩ E(Gi)) ∪ {ei} → N be the labelling with ℓGi
(e) = ℓG(e) for

e ∈ EV (G) ∩ E(Gi) and ℓGi
(ei) = x. Replacing G by G1 and G2 is a split.

The virtual edges e1 and e2 correspond to each other. Vice versa, if G1 and
G2 can be obtained by a split from G, then G is the merge graph of G1 and
G2. Replacing G1 and G2 by G is a merge. A biconnected graph without a
separation pair is triconnected.

Suppose a multigraph G is split, the split graphs are split, and so on, until
no more splits are possible. (Each graph remaining is triconnected). The graphs
constructed this way are called split components of G.

We say that two graphs H and H ′ are equivalent, if H ′ can be obtained
from H by renaming and relabelling the virtual edges in EV (H). Two sets of
graphs {G1, . . . , Gk} and {G′

1, . . . , G
′
k} are equivalent if the elements can be

ordered in such a way that Gi is equivalent to G′
i for all i ∈ {1, . . . , k} and

the correspondence of the virtual edges is preserved by the according renaming
and relabelling maps. Two sets of split components of the same graph are not
equivalent in general. Consider for example a cycle of length 4. The two possible
separation pairs yield different partitions of the edge set of the cycle.

Split components of G are of one of the following types:

triangles, 3-edges, and other triconnected graphs.

Denote the latter set by T . Merge the triangles of the split components as much
as possible to obtain a set of cycles C. Further, merge the 3-edges as much as
possible to obtain a set of multiedges M. The set C ∪ M ∪ T is the set of
triconnected components of G. Indeed, it is accurate to speak of the triconnected
components as the following statement of Hopcroft and Tarjan [HT73] shows:

Theorem 2 (Uniqueness of triconnected components [HT73]). If I and I’ are
two sets of triconnected components of the same biconnected graph, then I and
I ′ are equivalent.

∗This differs from the definition of 2-connected graphs as can be found in [Die00]. Con-
nected graphs of order 2 are biconnected but not 2-connected.
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The following statement is crucial for the proof of Theorem 2, cf. [HT73].
We will discuss in the next section how a variation of Lemma 3 serves us in
proving the uniqueness of 2.5-connected components.

Lemma 3 ([HT73]). Let I be a set of graphs obtained from a biconnected graph
G by a sequence of splits and merges.

(a) The graph S(I) with

V (S(I)) = I, E(S(I)) = {st : s and t contain corresponding virtual edges}

is a tree.

(b) The set I can be produced by a sequence of splits.

3 2.5-Connectivity

In the following, we transfer the above notation of [HT73] to mixed connectivity,
where separators may contain both, vertices and edges. Given a biconnected
graph which is not a triangle, a tuple (c, uv) ∈ V (G) × E(G) is a vertex-edge-
separator if G− uv − c is disconnected.

Lemma 4 ([HS19]). Let G be a biconnected graph. If (c, uv) is a vertex-edge-
separator of G, then G− uv − c has exactly two components, each containing a
vertex of {u, v}. Let a ∈ {u, v}. Denote the component containing a by Ca and
set Ga := G[V (Ca) ∪ {c}]. Then Ga + ca is biconnected.

With the same notation as in Lemma 4, it holds maxa∈{u,v}{|E(Ga)|} ≥ 2.
Let a ∈ {u, v}. If |E(Ga)| ≥ 2, then {c, a} is a separation pair of G. Let b
denote the vertex in {u, v} \ {a}. Now Ga + ac, Gb + ba + ac are split graphs
of {c, a} with virtual edges ac. We say that {a, c} supports the vertex-edge-
separator (c, uv) or that {a, c} is supporting. Replacing G by the two graphs
Ga + ac and Gb + ba+ ac is called 2.5-split of G at (c, uv) with support {a, c}.
The graphs Ga + ac and Gb + ba + ac are the 2.5-split graphs of G at (c, uv)
with support {a, c}. A non-supporting split is a split which is not of this form
for any vertex-edge separator. Observe that a vertex-edge-separator has at least
one and at most two separation pairs in its support.

If G is biconnected and no tuple (v, e) ∈ V (G) × E(G) is a vertex-edge-
separator, then G is 2.5-connected. In analogy to the notion of triconnected
components of Hopcroft and Tarjan [HT73], we define 2.5-connected components
of G, see also Figure 1.

Suppose a 2.5-split is carried out on G, the 2.5-split graphs are split by 2.5-
splits, and so on, until no more 2.5-splits are possible. (Each graph remaining is
2.5-connected). The graphs constructed this way are called 2.5-split components
of G.

Observe that 2.5-split components of a biconnected graph are not unique (a
cycle with more than 3-edges serves again as an example).
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Figure 1: A graph with its triconnected (left) and 2.5-connected (right) com-
ponents. Non-virtual edges are black. Virtual edges are green if they can be
obtained by a sequence of 2.5-splits and red otherwise.

The 2.5-split components of a given graph are of the following types:

triangles, multiedges of size at least 3, and other 2.5-connected graphs.

Let G be a graph. Consider a decomposition of G into 2.5-split components,
where T denotes the subset of triangles, M the set of multiedges and H denotes
the set of other 2.5-connected graphs in the decomposition. Now merge the
triangles in T as much as possible and leave the multiedges and 2.5-connected
graphs unchanged. Replace T in the split components by the set C of cycles
obtained this way. The components C ∪ M ∪ H obtained this way are the
2.5-connected components of G.

Lemma 5. Let I be a set of graphs obtained from a biconnected graph G by a
sequence of 2.5-splits and merges.

(a) The graph S(I) is a tree.†

(b) The set I can be produced by a sequence of splits.

(c) If I is a set of 2.5-connected components of G, then I can be produced by a
sequence of 2.5-splits.

Proof sketch. Applying the exact same arguments as in the proof of Lemma 3
in [HT73] we obtain (a) and (b).

We prove (c) by induction on the order of G. If |V (G)| ≤ 2, then the claim is
trivially satisfied since no 2.5-split is applicable to G. Therefore, let |V (G)| ≥ 3.
Let Gl be a leaf of T (I) and set I ′ := I \{Gl}. Denote the graph obtained from
merging all graphs in I ′ at corresponding virtual edges by G′. Observe that I ′

is a set of 2.5-connected components of G′.
By induction I ′ can be obtained by a sequence of 2.5-splits s1, s2, . . . , sk

from G′. Let Gn be the graph in I ′ that is adjacent to Gl in T (I) and let Gnl

†Recall the definition of S(I) from Lemma 3.
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be the graph obtained from merging Gl with Gn. By the above considerations,
the set (I ′ \ {Gl}) ∪ {Gnl} can be obtained from G by a sequence of 2.5-splits.
Since the split of Gnl into Gn and Gl is a 2.5-split, we obtain that I can be
obtained from G by a sequence of 2.5-splits.

Lemma 6 (cf. [HS19]). Let G1 and G2 be split graphs of a biconnected graph
G with respect to some separation pair. If (c, e) is a vertex-edge-separator of G1

and e ∈ E(G), then (c, e) is a vertex-edge-separator of G.

Lemma 7. Let I be a set of 2.5-connected components of a biconnected graph
G. The triconnected components of G can be obtained from I by a sequence of
splits.

Proof. By Lemma 5(c) there is a sequence s′ of 2.5-splits such that I can be
obtained from G with s′. Apply a sequence of splits s to the graphs in I to
obtain a set of split components I ′ of G. In order to obtain the triconnected
components of G from I ′, cycles (respectively multiedges) with a virtual edge
in common are merged. Suppose one of these merges m′ corresponds to a pair
of virtual edges (e1, e2) created by a 2.5-split in s′. By definition of a 2.5-split,
e1 or e2 is incident to a vertex of degree 2, say e1. As this remains true after
any sequence of further splits, we know that m′ is a merge of two cycles. By
Lemma 6, this implies that e1 and e2 are both part of a vertex-edge separator
in their respective graphs in I. The only graphs in I containing vertex-edge
separators are cycles. Thus, in I there exist two cycles containing corresponding
virtual edges. A contradiction.

Let H be a graph and e ∈ E(H). Recall that the ear of e inH is the maximal
(possibly closed) path in H that contains e such that all its internal vertices are
of degree two in H . A subgraph P of H is called an ear if it is an ear of some
edge of H . If both endvertices of e are of degree at least 3 in H , then the ear
of e in H is trivial, that is, the ear is the length-1 path containing e. Otherwise
it is called non-trivial.

Lemma 8. Let s = s1 . . . sk be a sequence of splits of a biconnected graph G
such that the resulting graphs are the triconnected components of G.

(a) None of the separation pairs that correspond to the splits in s contains a
vertex which is of degree 2 when the split is carried out.

(b) Let i ∈ {1, . . . , k}. Consider the graphs G1, . . . , Gi+1 obtained from carrying

out s1, . . . , si on G. Let e, e′ ∈
⋃i+1

j=1
E(Gj) be corresponding virtual edges.

If e1 lies on a non-trivial ear, then e2 lies on a trivial ear.

(c) Let H1 and H2 be triconnected components of G containing corresponding
virtual edges e1 ∈ E(H1) and e2 ∈ E(H2). If the ear of e1 in H1 is non-
trivial, then H1 is a cycle and the ear of e2 in H2 is trivial.

Proof. We prove part (a). Suppose towards a contradiction that s contains a
split si which splits the graph H at a separation pair {u, v} with degH(u) = 2.

7



It follows by a simple induction on the number of splits succeeding si that
amongst the triconnected components of G there are two graphs G1 and G2

such that u ∈ V (G1) ∩ V (G2) and degG1
(u) = degG2

(u) = 2 and, in both
graphs G1 and G2, u is incident to a virtual edge that corresponds to si. The
only triconnected components that contain degree-2 vertices are cycles and,
hence, G1 and G2 are cycles with a common virtual edge. That contradicts
the construction of the triconnected components, where cycles with a common
virtual edge are merged.

Now, part (b) follows with similar considerations. Suppose towards a con-
tradiction that two corresponding virtual edges e and e′ each lie on a non-trivial
ear after carrying out splits s1 . . . si. In particular, e and e′ are both incident to
a degree-2 vertex. As above, this implies that both, e and e′ are corresponding
virtual and contained in distinct cycles of the triconnected components of G,
which is a contradiction.

Since triconnected components with degree-2 vertices are cycles, part (c) is
a consequence of (b).

Theorem 9 (Unique colouring of virtual edges). Let s = s1s2 . . . sk be a se-
quence of splits that is carried out on a graph G such that the obtained graphs
are the triconnected components of G. We define a 2-colouring of the virtual
edges of the triconnected components starting from the uncoloured graph G. For
i ∈ {1, . . . , k}:

· If si is a non-supporting split, then the respective virtual edges are coloured
red.

· If si is a 2.5-split for some vertex-edge-separator (c, e) where e is a green
virtual edge or a non-virtual edge, then let e⋆ and e⋆⋆ be the virtual edges
arising from si. Colour all virtual edges with labels that appear in the ear
of e⋆ and e⋆⋆ green.

· If si is a 2.5-split only for vertex-edge-separators (c, e) with e red, then the
virtual edges corresponding to si are coloured red.

The colouring of the virtual edges of the triconnected components obtained this
way is independent of the choice of s.

See Figure 1 for an example of the above colouring.

Proof. We prove the following more general statement:

Claim 1: Let i ∈ {0, 1, . . . , l} and let G1, G2, . . . , Gi+1 be the graphs that are
obtained from carrying out the splits s1, s2, . . . , si. It holds for each virtual edge
e⋆ ∈

⋃i+1

j=1
E(Gj) that e

⋆ is coloured green if and only if e⋆ or its corresponding
edge is contained in an ear with at least one non-virtual edge. Otherwise it is
red.

Internal vertices of ears are of degree 2. Thus by Lemma 8, internal vertices
are never contained in a separation pair that corresponds to one of the splits
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s1, . . . , sk, that is,

ears are never split by the sequence s1s2 . . . sk. (1)

We prove Claim 1 by induction on i. If i = 0, then no split is carried out
and, hence, there are no virtual edges to consider and Claim 1 satisfied.

Now let i ≥ 1. By induction, Claim 1 holds for the graphs G′
1, G

′
2, . . . , G

′
i

obtained from carrying out s1, . . . , si−1. Without loss of generality, si splits G
′
i

into Gi and Gi+1. Let e
⋆
i ∈ E(Gi) and e⋆i+1 ∈ E(Gi+1) be the new virtual edges.

First assume that si is a non-supporting split. The edges e⋆i and e⋆i+1 are
red and have trivial ears since si is non-supporting. Thus, e⋆i and e⋆i+1 satisfy
Claim 1. Other virtual edges and their ears remain unchanged by si.

Now assume that si supports a vertex-edge-separator (c, e) of G′
i. We may

assume that e ∈ E(Gi). In particular,

e and e⋆i lie on the same ear P of Gi. (2)

By Lemma 8(b) and (2) it holds that

all virtual edges that correspond to an edge of P lie on a trivial ear. (3)

If an ear in G′
i is lengthened by si, then the ear is a subpath of P according

to (2) and Lemma 8(b). In particular, it suffices to prove Claim 1 for the virtual
edges of P .

If e is non-virtual, then all virtual edges of P and their corresponding edges
are coloured green and Claim 1 is satisfied. If e is green, then by induction e or
its corresponding edge lie in a non-trivial ear of G′

i which contains a non-virtual
edge. This ear is a subpath of P by Lemma 8(b) and, hence, Claim 1 is satisfied.
If e is red, then the ear P ′ of e in G′

i solely consists of red edges by induction. If
si supports a vertex-edge-separator with a green or non-virtual edge, then one
of the above cases applies. Otherwise, P is the union of the trivial ears G′

i[e
⋆
i ],

P ′, and possibly one additional ear that contains a red edge of a vertex-edge-
separator supported by si. All of the ears consist solely of virtual red edges.
This settles the claim.

Corollary 10. Let G be a biconnected graph and let e and e′ be corresponding
virtual edges of the triconnected components of G. Apply the edge-colouring of
Theorem 9. The following statements are equivalent:

· e is red.

· e′ is red.

· The ears of e and e′ in the triconnected components are both trivial, or,
one of the two ears is a cycle solely consisting of virtual edges and the
other ear is trivial.

9



Proof. Let e and e′ be two corresponding virtual edges. By Claim 1 of the above
proof, e is red if and only if the ear of e and the ear of e′ solely consist of virtual
edges. If we consider triconnected components, then it follows from Lemma 8(c)
that the two ears are trivial or one of them is a cycle solely consisting of virtual
edges.

In Chapter 4 we will exploit Corollary 10 to develop a linear time algorithm
that computes the 2.5-connected components of a given graph.

Theorem 11 (Uniqueness of 2.5-connected components). If I and I’ are two
sets of 2.5-connected components of the same biconnected graph, then I and
I ′ are equivalent. With respect to the colouring described in Theorem 9, the
2.5-connected components of G are obtained from the unique triconnected com-
ponents by merging all red edges of the triconnected components of G.

Proof. We use the same edge colouring as in Theorem 9. Let s be a sequence
of 2.5-splits that leads to some 2.5-connected components H1, H2, . . . , Hl of G.
Observe that all virtual edges that correspond to the splits in s are green.
By Lemma 7 there exists a sequence of splits s′ such that the triconnected
components of G are obtained by carrying out ss′. As a direct consequence of
Lemma 6, all virtual edges that correspond to splits in s′ are red.

Altogether, splits from s correspond to green edges and splits from s′ corre-
spond to red edges. However, we know that the red-green colouring of the virtual
edges of triconnected components is independent of the choice of s and s′ by The-
orem 9. This implies that any sequence that leads to 2.5-connected components
corresponds to the same set of virtual edges of the triconnected components.
This settles the claim.

Corollary 12. Let G be a graph. If I denotes the 2.5-connected components
of G and I ′ denotes the triconnected components of G, then S(I) is a minor of
S(I ′).‡

Proof. This follows from Theorem 11 since merging two components corresponds
to contracting an edge of S(I ′).

Corollary 13. A biconnected graph is 2.5-connected if and only if no cycle of
its triconnected components contains a non-virtual edge.

4 A Linear Time Algorithm for 2.5-Connected

Components

Based on the work of Hopcroft and Tarjan [HT73] Gutwenger and Mutzel [GM00]
showed that the triconnected components of a given graph can be computed in
linear time. In this section, we provide a linear-time algorithm which computes
the 2.5-connected components of a graph given its triconnected components. It

‡Recall the definition of S(I) from Lemma 3.
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follows that the 2.5-connected components of a given graph can be computed
in linear time. The main idea is again, to exploit the red-green colouring of
the virtual edges in order to obtain the 2.5-connected components from the
triconnected components.

Theorem 14. The 2.5-connected components of a biconnected graph can be
computed in linear time.

Proof. Let G be a biconnected graph and denote by E′ the set of all virtual edges
in the triconnected components of G. By Gutwenger and Mutzel [GM00] the
triconnected components as well as the set of virtual edges can be computed in
linear time. It remains to determine those virtual edges that need to be merged
again in order to get the 2.5-connected components of G. By Theorem 11 these
are the red edges defined in Theorem 9. By Corollary 10 an edge e is coloured
red if and only e and its corresponding edge lie on a trivial ear or one of the
two ears is a cycle solely consisting of virtual edges. Clearly, we can find these
virtual edges in linear time by moving through the tree structure given by the
triconnected components, taking into account that the number of virtual edges
is linear in the number of vertices and edges of G, cf. [GM00]. Further each
merge can be realised in constant time which gives us the desired result.

5 Critical 2.5-Connected Graphs

In this chapter, we provide novel decomposition techniques for critical 2.5-
connected graphs. In analogy to Tutte’s well-known decomposition theorem
(Theorem 18) we show that critical 2.5-connected graphs which are not isomor-
phic to the K4 can be reduced to critical 2.5-connected graphs of smaller order
using simple graph operations.

Let G be a biconnected graph. A vertex-2-edge-separator of G is a triple
(c, e1, e2) ∈ V (G)×E(G)2 such that G− e1− e2− c is disconnected. A graph G
is critical 2.5-connected if G is 2.5-connected and for every edge e ∈ E(G) it
holds that G− e is not 2.5-connected, that is, e is contained in a vertex-2-edge-
separator of G. If u ∈ V (G) is a degree-3 vertex with incident edges e0, e1, e2,
then the vertex-2-edge-separator (c, e1, e2) is degenerate, where c denotes the
vertex that is joined to u by e0. A critical 2.5-connected graph is degenerate if
every vertex-2-edge-separator is degenerate. Consider prisms of order at least 8
or complete bipartite graphs isomorphic to K3,n with n ≥ 3 as examples for
infinite families of degenerate graphs.

Theorem 15. A 2.5-connected graph G with triconnected components I is crit-
ical if and only if the following conditions are satisfied:

(a) every k-edge M ∈ I containing a non-virtual edge is a 3-edge that contains
exactly one virtual edge and the unique neighbour of M in S(I) is a cycle,

(b) every other component H ∈ I satisfies that each non-virtual edge of H lies
on a vertex-2-edge-separator of H with both edges non-virtual.
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Proof. First assume that G is critical 2.5-connected. Let H be a triconnected
component of G which contains a non-virtual edge e1 ∈ E(H). Since G is
critical, there exists an edge e2 and a vertex c in G such that (c, e1, e2) is a
vertex-2-edge-separator of G.

Suppose towards a contradiction that e2 /∈ E(H). LetH ′ be the triconnected
component of G with e2 ∈ E(H ′). It follows from Corollary 13 that neither H
nor H ′ is a cycle. In particular, H − e1 and H ′ − e2 are biconnected graphs.
Now, merging preserves biconnectivity and, hence, G − e1 − e2 is biconnected.
This is a contradiction since G− e1 − e2 − c is disconnected.

So far, we have shown that e1 and e2 are both contained in the same tricon-
nected component H of G which is not a cycle.

First assume that H is not a k-edge. If H ∈ T and c ∈ V (H), then (c, e1, e2)
is a vertex-2-edge-separator of H . (A virtual edge with ends in distinct compo-
nents of H − e1 − e2 − c would imply the existence of a path in G− e1 − e2 − c
between the components which is a contradiction.) Therefore let c /∈ V (H). Let
e⋆ be the virtual edge in H with the following property: Removing the edge
corresponding to the label of e⋆ from S(I) disconnects the triconnected compo-
nents containing c from H . Then H − e1 − e2 − e⋆ is disconnected. Choose a
suitable endvertex u of e⋆ to obtain the desired vertex-2-edge-separator of H .

Now, let H be a k-edge and denote the number of virtual edges in H by i.
If i = 0, then G = H which is a contradiction since H is not critical. If
i ∈ {3, . . . , k − 1}, then denote by e′ a non-virtual edge in E(H). We claim
that G − e′ is 2.5-connected. The triconnected components I ′ of G − e′ are
I ∪ {H − e′} \ {H} and, hence, every cycle in I ′ is free of non-virtual edges.
By Corollary 13 G − e′ is 2.5-connected which contradicts the assumption. If
i = 2, then denote the two neighbour graphs of H in S(I) by G1 and G2. For
j ∈ {1, 2} let ej ∈ E(Gj) be the edge that corresponds to a virtual edge in H .
Relabel e1 and e2 such that they are corresponding virtual edges. Denote the
resulting graphs by G′

1 and G′
2. The triconnected components of G − e′ are

given by I ∪ {G′
1, G

′
2} \ {G1, G2, H} and, hence, do not contain cycles solely

consisting of virtual edges. Analogously to the above case, this implies that
G− e′ is 2.5-connected which is a contradiction.

If i = 1, thenH is a leaf of S(I). SinceG does not properly contain 3-edges as
subgraphs by assumption, we obtain k = 3. The graph G′ obtained by merging
all components in I \ {H} at corresponding virtual edges is biconnected since
being biconnected is preserved under merges. Denote by e1 and e2 the two non-
virtual edges ofH . If G−e1−ê−c is disconnected for some (c, ê) ∈ V (G)×E(G),
then ê = e2. However, G

′ = G− e1− e2 is biconnected which is a contradiction.

Now assume that conditions (a) and (b) are satisfied. Let e1 ∈ E(G) and
let H ∈ I with e1 ∈ E(H). If H is not a k-edge, then according to (b) there
exists (c, e2) ∈ V (H) × E(H) such that e2 is non-virtual and (c, e1, e2) is a
vertex-2-edge-separator of H . Then G − e1 − e2 − c is disconnected since each
path in G connecting vertices of H with edges outside of H is represented by
virtual edges in H .

Otherwise, H is a 3-edge with two non-virtual edges e1 and e2 and there
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exists a cycle C ∈ I adjacent to H in S(I). Choose a vertex c ∈ V (C) \ V (H).
Then (c, e1, e2) is a vertex-2-edge separator of G. This settles the claim.

Theorem 16. Let G be a 3-connected graph that contains a non-degenerate
vertex-2-edge-separator (c, e1, e2).

(a) If c is incident to an edge e0 ∈ E(G) such that G−e0−e1−e2 is disconnected
with components C1 and C2, then let G1 (G2) be the graph constructed by
adding a new vertex x1 (x2) and the edges uix1 (vix2) for i ∈ {0, 1, 2},
where ui (vi) denotes the endvertex of ei in C1 (C2).

(b) Otherwise, there are exactly two components C1 and C2 of G− e1 − e2 − c.
Let G1 (G2) be the graph constructed from G[V (C1)∪{c}] (G[V (C2)∪{c}])
by adding a new vertex x1 (x2) and the edges u1x1, u2x1, and cx1 (v1x2,
v2x2, and cx2), where ui (vi) is the endvertex of ei in C1 (C2).

If G is critical 2.5-connected, then G1 and G2 are critical 2.5-connected 3-
connected graphs of smaller order than G.

Proof. Assume that the constraints of (a) are satisfied. We may restrict our-
selves to proving that G1 is a critical 2.5-connected 3-connected graph of lesser
order than G. If follows from Menger’s theorem that G1 is a 3-connected graph
(⋆). This implies that G1 is 2.5-connected. It remains to show that G1 is critical
2.5-connected.

Suppose towards a contradiction that G1 − ê1 is 2.5-connected for some
ê1 ∈ E(G1). Since {u1x1, u2x1, cx1} disconnects x1 from the rest of G1, we
know that ê1 ∈ E(G). Let ê2 ∈ E(G) and ĉ ∈ V (G). If ê2 ∈ {e0, e1, e2},
then G− ê1 − ê2 − ĉ is connected as a consequence of the 3-connectivity of G1

andG2. From now on, we assume that ê2 /∈ {e0, e1, e2}. If ĉ ∈ V (G1)\{x1}, then
G1−ê1−ê2−ĉ is connected by the assumption on ê1 and G2−ê2−x2 is connected
by (⋆). Then G1− ê1− ê2− ĉ−x1 has at most three components, each containing
at least one vertex from {u0, u1, u2}. This implies that G − ê1 − ê2 − ĉ =
G1−x1∪G2−x2− ê1− ê2− ĉ+e1+e2+e3 is connected for any choice of ê2 and
ĉ which is a contradiction. If, otherwise ĉ ∈ V (G2) \ {x2}, then G1 − ê1 − ê2 is
biconnected and G2− ê2−x2− ĉ has at most three components, each containing
at least one vertex from {v0, v1, v2}. As above, we obtain a contradiction to G
being critical since G− ê1 − ê2 − ĉ is connected for any choice of ê2 and ĉ.

In order to prove (b), observe that it follows from the 3-connectivity of G that
there are exactly two components C1 and C2 of G− e1 − e2 − c. Now, we may
apply the exact same arguments as in (a). This settles the claim.

The only 3-connected critical graphs which cannot be decomposed into crit-
ical graphs of smaller order using operations above are degenerate graphs.

Theorem 17. Let G be a degenerate 3-connected graph which is not 3-regular
and let u ∈ V (G) with degG(u) = 3. Denote the neighbours of u by v1, v2,
and v3.

13



(a) If degG(vi) ≥ 4 for i ∈ {1, 2, 3}, then set G′ := G− u.

(b) If degG(v1) = 3 and degG(v3) ≥ 4, then set G′ := G− u+ v1v2.

The graph G′ is critical 2.5-connected with |V (G′)| < |V (G)|.

Proof. Let H be a 2.5-connected graph. Observe that

if every edge in H is incident to a degree-3 vertex, then H is critical. (4)

This follows since an edge that is incident to a degree-3 vertex lies in a degenerate
separator. Vice versa, it holds that

if H is degenerate, then every edge of H is incident to a degree-3 vertex. (5)

Suppose that a degenerate graph H contains a triangle. It follows from (5)
that at least two vertices, say u and v, of the triangle are of degree 3. Let w
denote the third vertex of the triangle and denote by eu (ev) the unique edge
that is incident to u (v) but is not contained in the triangle. Now (w, eu, ev) is
a non-degenerate separator if H is not a complete graph on four vertices. This
is a contradiction. We obtain that

if a degenerate graph is not isomorphic to the K4, then it is triangle-free. (6)

Every edge in G is incident to a degree-3 vertex by (5). This is maintained
when we construct G′. It follows from (4) that it suffices to prove that G′ is
2.5-connected. Suppose towards a contradiction that G′ contains a vertex-edge-
separator (c, e). If the neighbourhood of u is contained in one component of
G′ − c − e, then (c, e) is a vertex-edge-separator of G which is a contradiction.
Therefore, v1, v2, and v3 are not all in the same component of G′ − c− e.

First assume (a). Without loss of generality v1 is in a different component of
G′−c−e than v2 and v3. Consequently (c, e, uv1) is a non-degenerate separator
in the degenerate graph G which is a contradiction.

Now assume (b). Observe that {v1, v2, v3} is an independent set in G by (6).
If v1 is in a different component than v2 and v3 in G′ − c− e, then e = v1v2 or
c = v2. In the first case G− c− uv1 is disconnected which contradicts that G is
2.5-connected. In the second case (c, e, uv1) is a non-degenerate separator of G
which contradicts the degeneracy of G. Interchanging the roles of v1 and v2
leads to a contradiction if v2 is separated from v1 and v3 by (c, e).

Last assume that v3 does not share a component with v1 and v2 in G′−c−e.
Now (c, e, uv3) is a non-degenerate separator of G since degG(v3) ≥ 4. This
settles the claim.

We have shown in this chapter that critical 2.5-connected graphs can be
reduced using simple operations until the obtained graphs are 3-regular and
3-connected. Then we may apply the following theorem of Tutte.

Theorem 18 ([Wor79], cf. [Tut66]). Each simple 3-connected 3-regular graph
other than a complete graph on four vertices can be obtained from a 3-connected
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3-regular graph H by subdividing two distinct edges of H and connecting the
subdivision vertices with a new edge. Conversely, each graph obtainable in this
way is 3-connected.

The graph H in Theorem 18 is 3-regular and 3-connected and, hence, H is
critical 2.5-connected. We close this chapter with an example. Consider Fig-

v3

v2 u

v1

c

e1

e2

x1

x2

Figure 2: Reduction of a degenerate graph.

ure 5. The left graph is degenerate and not 3-regular. We apply Theorem 17(b)
to obtain the graph in the middle. This graph is critical 2.5-connected and con-
tains a non-degenerate separator (c, e1, e2). We obtain the isomorphic copies
of the K3,3 and the K4 on the right by carrying out the construction of The-
orem 16(b). Observe that both of the graphs on the right are 3-regular and
3-connected. We may now apply Theorem 18 to reduce the bipartite graph
further while the critical 2.5-connectivity is preserved.

6 Application to Extremal Cycle Decomposition

In this section, we prove that the problem of finding an extremal cycle de-
composition of an Eulerian graph can be reduced to finding an extremal cycle
decomposition for its 2.5-connected components. Furthermore, we show how
Hajós’ conjecture can be reduced to considering 2.5-connected components. A
decomposition of a graph G is a set of subgraphs C of G such that each edge of G
is contained in exactly one of the subgraphs. We say that G can be decomposed
into the elements of C. If all of the subgraphs in C are cycles, then C is a cycle
decomposition. For an Eulerian graph G we set

c(G) := min{k : G can be decomposed into k cycles} and

ν(G) := max{k : G can be decomposed into k cycles}.

A cycle decomposition of G with c(G) (ν(G)) cycles is minimal (maximal).
Let G1 and G2 be obtained from carrying out a 2.5-split on G. It is proven
in [HS19] that c(G) = c(G1) + c(G2) − 1 and ν(G) = ν(G1) + ν(G2) − 1. The
theorem below follows.

Theorem 19. Let G be a biconnected Eulerian graph and G1, G2, . . . , Gk its
2.5-connected components.

(a) c(G) =
∑k

i=1
c(Gi)− k + 1,
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(b) ν(G) =
∑k

i=1
ν(Gi)− k + 1.

Hajós’ conjecture asserts that an Eulerian graph can be decomposed into at
most 1/2(|V (G)| +m(G) − 1) cycles, where m(G) denotes the minimal number
of edges that need to be removed from G in order to obtain a simple graph.§

The only progress made towards a verification of Hajós’ conjecture concerns
graphs that contain vertices of degree at most 4 (cf. [FX02]), very sparse graphs
(cf. [FGH19]) and, very dense graphs (cf. [GGKO19]).

Theorem 20. Let G be a biconnected graph. If all 2.5-connected components
of G satisfy Hajós’ conjecture, then G satisfies Hajós’ conjecture.

In particular, the conjecture of Hajós’ is satisfied if and only if all 2.5-con-
nected graphs satisfy Hajós’ conjecture.

Proof. Assume that all 2.5-connected graphs satisfy Hajós’ conjecture. Let G
be an Eulerian graph. Granville and Moisiades [GM87] proved that it suffices
to verify Hajós’ conjecture for all biconnected graphs in order to show that all
graphs satisfy the conjecture. In particular, we may assume that G is bicon-
nected. We prove the following claim: Let G1 and G2 be obtained from carrying
out a 2.5-split on G. If G1 and G2 satisfy Hajós’ conjecture, then G satisfies
Hajós’ conjecture.

We have V (G1) + V (G2) = V (G) + 2 and m(G1) + m(G2) ≤ m(G) + 1.
Consequently,

c(G) = c(G1) + c(G2)− 1

≤ 1/2 (|V (G1)|+ |V (G2)|+m(G1) +m(G2)− 2)− 1

≤ 1/2 (|V (G)|+ 2 +m(G) + 1− 2)

= 1/2 (|V (G)|+m(G)− 1) .

Now, the statement follows by induction on the number of 2.5-connected com-
ponents of G.

7 Conclusion

We provide a canonical decomposition of a biconnected graph into its unique
2.5-connected components. Furthermore, we show how these components can be
constructed from the triconnected components of the graph. This overall gives
a linear-time algorithm for the 2.5-connected components. We show that all
critical 2.5-connected except complete graphs on four vertices can be reduced to
smaller critical 2.5-connected graphs. Finally, we prove that it suffices to verify
Hajós’ conjecture for all 2.5-connected graphs in order to verify the conjecture
for all graphs.

§Originally, Hajós conjectured that at most 1/2|V (G)| cycles are needed. This equivalent
reformulation is due to Fan and Xu, cf. [FX02].
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