Skip to main content

NER in Threat Intelligence Domain with TSFL

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12430))

  • 3578 Accesses

Abstract

In order to deal with more sophisticated Advanced Persistent Threat (APT) attacks, it is indispensable to convert cybersecurity threat intelligence via structured or semi-structured data specifications. In this paper, we convert the task of extracting indicators of compromises (IOC) information into a sequence labeling task of named entity recognition. We construct the dataset used for named entity identification in the threat intelligence domain and train word vectors in the threat intelligence domain. Meanwhile, we propose a new loss function TSFL, triplet loss function based on metric learning and sorted focal loss function, to solve the problem of unbalanced distribution of data labels. Experiments show that named entity recognition experiments show that F1 value have improved in both public domain datasets and threat intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)

    MATH  Google Scholar 

  2. Lample, G., Ballesteros, M., Subramanian, S., et al.: Neural architectures for named entity recognition (2016)

    Google Scholar 

  3. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF (2016)

    Google Scholar 

  4. Peters, M.E., Neumann, M., Iyyer, M., et al.: Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)

  5. Devlin, J., Chang, M.W., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Joshi, A., Lal, R., Finin, T., et al.: Extracting cybersecurity related linked data from text. In: IEEE Seventh International Conference on Semantic Computing, pp. 252–259. IEEE (2013)

    Google Scholar 

  7. Sabottke, C., Suciu, O., Dumitras, T.: Vulnerability disclosure in the age of social media: exploiting Twitter for predicting real-world exploits. In: Proceedings of the 24th USENIX Security Symposium (USENIX Security 2015). USENIX Association (2015)

    Google Scholar 

  8. Liao, X., Yuan, K., Wang, X., Li, Z., Xing, L., Beyah, R.: Acing the IOC game: toward automatic discovery and analysis of open-source cyber threat intelligence. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS). Association for Computing Machinery (2016)

    Google Scholar 

  9. Zhu, Z., Dumitras, T.: ChainSmith: automatically learning the semantics of malicious campaigns by mining threat intelligence reports. In: IEEE European Symposium on Security and Privacy. IEEE (2018)

    Google Scholar 

  10. Dionísio, N., Alves, F., et al.: Cyberthreat detection from twitter using deep neural networks. In: IEEE International Joint Conference on Neural Networks. IEEE (2019)

    Google Scholar 

  11. Tan, S., Long, Z., Tan., L., Guo, H.: Automatic identification of indicators of compromise using neural-based sequence labelling (2018)

    Google Scholar 

  12. Zi, L., et al.: Collecting indicators of compromise from unstructured text of cybersecurity articles using neural-based sequence labelling. In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE (2019)

    Google Scholar 

  13. Xing, E.P., Ng, A.Y., Jordan, M.I., et al.: Distance metric learning with application to clustering with side-information. In: International Conference on Neural Information Processing Systems. MIT Press (2002)

    Google Scholar 

  14. Hadsell, R., Chopra, S., Lecun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1735–1742, New York, USA (2006)

    Google Scholar 

  15. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2015)

    Google Scholar 

  16. Lan, Z., et al.: ALBERT: A lite BERT for self-supervised learning of language representations. In: International Conference on Learning Representations (2019)

    Google Scholar 

  17. Wei, J.W., Kai, Z.: EDA: easy data augmentation techniques for boosting performance on text classification tasks. arXiv preprint arXiv:1901.11196 (2019)

  18. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

Download references

Acknowledgments

We thank the corresponding authors Xuren Wang and Zihan Xiong for their help. This work is supported by the National Key Research and Development Program of China (Grant No. 2018YFC0824801, Grant No. 2016QY06X1204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuren Wang or Zihan Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Xiong, Z., Du, X., Jiang, J., Jiang, Z., Xiong, M. (2020). NER in Threat Intelligence Domain with TSFL. In: Zhu, X., Zhang, M., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2020. Lecture Notes in Computer Science(), vol 12430. Springer, Cham. https://doi.org/10.1007/978-3-030-60450-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60450-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60449-3

  • Online ISBN: 978-3-030-60450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics