Skip to main content

TransBidiFilter: Knowledge Embedding Based on a Bidirectional Filter

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12430))

  • 2981 Accesses

Abstract

A large-scale knowledge base can support a large number of practical applications, such as intelligent search and intelligent question answering. As the completeness of the information in a knowledge base may have a direct impact on the quality of downstream applications, its automatic completion has become a crucial task for many researchers and practitioners. To address this challenge, the knowledge representation learning technology which represents entities and relations as low-dimensional dense real value vectors has been developed rapidly in recent years. Although researchers continue to improve knowledge representation learning models using an increasingly complex feature engineering, we find that the most advanced models can be outdone by simply considering interactions from entities to relations and that from relations to entities without requiring huge number of parameters. In this work, we present a knowledge embedding model based on a bidirectional filter called TransBidiFilter. By learning the global shared parameter set based on the traditional gate structure, TransBidiFilter captures the restriction rules from entities to relations and that from relations to entities respectively. It achieves better automatic completion ability by modifying the standard translation-based loss function. In doing so, though with much fewer discriminate parameters, TransBidiFilter performs better than state-of-the-art baselines of semantic discriminate models on most indicators on many datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, G.: Wordnet: a lexical database for English. Commun. ACM 38, 39–41 (1995)

    Article  Google Scholar 

  2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)

    Google Scholar 

  3. Fabian, M., Gjergji, K., Gerhard, W., et al.: Yago: a core of semantic knowledge unifying wordnet and wikipedia. In: 16th International World Wide Web Conference, WWW, pp. 697–706 (2007)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  5. Cai, L., Wang, W.Y.: Kbgan: adversarial learning for knowledge graph embeddings. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1470–1480 (2018)

    Google Scholar 

  6. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: The Thirty-Second AAAI Conference on Artificial Intelligence, pp. 1811–1818 (2018)

    Google Scholar 

  7. Garcia-Duran, A., Niepert, M.: Kblrn: end-to-end learning of knowledge base representations with latent, relational, and numerical features. In: Proceedings of UAI (2017)

    Google Scholar 

  8. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: Thirty-Second AAAI Conference on Artificial Intelligence, pp. 4816–4823 (2018)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  10. Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer matrix. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 985–991 (2016)

    Google Scholar 

  11. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 2181–2187 (2015)

    Google Scholar 

  12. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 327–333 (2017)

    Google Scholar 

  13. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  14. Tan, Z., Zhao, X., Wang, W.: Representation learning of large-scale knowledge graphs via entity feature combinations. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1777–1786 (2017)

    Google Scholar 

  15. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, pp. 57–66 (2015)

    Google Scholar 

  16. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33rd International Conference on Machine Learning, pp. 2071–2080 (2016)

    Google Scholar 

  17. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 1112–1119 (2014)

    Google Scholar 

  18. Xiao, H., Huang, M., Zhu, X.: Transg:a generative model for knowledge graph embedding. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 2316–2325 (2016)

    Google Scholar 

  19. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the International Conference on Learning Representations (2014)

    Google Scholar 

  20. Yuan, J., Gao, N., Xiang, J.: Transgate: knowledge graph embedding with shared gate structure. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3100–3107 (2019)

    Google Scholar 

  21. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), vol. 1, pp. 687–696 (2015)

    Google Scholar 

  22. He, S., Liu, K., Ji, G., Zhao, J.: Learning to represent knowledge graphs with gaussian embedding. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 623–632. ACM (2015)

    Google Scholar 

  23. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  24. García-Durán, A., Bordes, A., Usunier, N.: Composing relationships with translations. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 286–290 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, X., Gao, N., Yuan, J., Zhao, L., Wang, L., Cai, S. (2020). TransBidiFilter: Knowledge Embedding Based on a Bidirectional Filter. In: Zhu, X., Zhang, M., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2020. Lecture Notes in Computer Science(), vol 12430. Springer, Cham. https://doi.org/10.1007/978-3-030-60450-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60450-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60449-3

  • Online ISBN: 978-3-030-60450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics