Abstract
Paraphrase plays an important role in various Natural Language Processing (NLP) problems, such as question answering, information retrieval, conversation systems, etc. Previous approaches mainly concentrate on producing paraphrases with similar semantics, namely fidelity, while recent ones begin to focus on the diversity of generated paraphrases. However, most of the existing models fail to explicitly emphasize on both metrics above. To fill this gap, we propose a submodular optimization-based VAE-transformer model to generate more consistent and diverse phrases. Through extensive experiments on datasets like Quora and Twitter, we demonstrate that our proposed model outperforms state-of-the-art baselines on BLEU, METEOR, TERp and n-distinct grams. Furthermore, through ablation study, our results suggest that incorporating VAE and submodularity functions could effectively promote fidelity and diversity respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barzilay, R., Lee, L.: Learning to paraphrase: an unsupervised approach using multiple-sequence alignment. In: HLT-NAACL. The Association for Computational Linguistics (2003)
Bolshakov, I.A., Gelbukh, A.: Synonymous paraphrasing using WordNet and Internet. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 312–323. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27779-8_27
Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Józefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: CoNLL, pp. 10–21. ACL (2016)
Elhamifar, E., Sapiro, G., Sastry, S.S.: Dissimilarity-based sparse subset selection. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2182–2197 (2016)
Fu, Y., Feng, Y., Cunningham, J.P.: Paraphrase generation with latent bag of words. In: NeurIPS, pp. 13623–13634 (2019)
Gimpel, K., Batra, D., Dyer, C., Shakhnarovich, G.: A systematic exploration of diversity in machine translation. In: EMNLP, pp. 1100–1111. ACL (2013)
Gupta, A., Agarwal, A., Singh, P., Rai, P.: A deep generative framework for paraphrase generation. In: AAAI, pp. 5149–5156. AAAI Press (2018)
Huang, S., Wu, Y., Wei, F., Luan, Z.: Dictionary-guided editing networks for paraphrase generation. In: AAAI, pp. 6546–6553. AAAI Press (2019)
Iyyer, M., Wieting, J., Gimpel, K., Zettlemoyer, L.: Adversarial example generation with syntactically controlled paraphrase networks. In: NAACL-HLT, pp. 1875–1885. Association for Computational Linguistics (2018)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Found. Trends Mach. Learn. 5(2–3), 123–286 (2012)
Kumar, A., Bhattamishra, S., Bhandari, M., Talukdar, P.P.: Submodular optimization-based diverse paraphrasing and its effectiveness in data augmentation. In: NAACL-HLT (1), pp. 3609–3619. Association for Computational Linguistics (2019)
Lan, W., Qiu, S., He, H., Xu, W.: A continuously growing dataset of sentential paraphrases. In: EMNLP, pp. 1224–1234. Association for Computational Linguistics (2017)
Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A diversity-promoting objective function for neural conversation models. In: HLT-NAACL, pp. 110–119. The Association for Computational Linguistics (2016)
Li, Z., Jiang, X., Shang, L., Li, H.: Paraphrase generation with deep reinforcement learning. In: EMNLP, pp. 3865–3878. Association for Computational Linguistics (2018)
Liu, D., Liu, G.: A transformer-based variational autoencoder for sentence generation. In: IJCNN, pp. 1–7. IEEE (2019)
McKeown, K.R.: Paraphrasing questions using given and new information. Am. J. Comput. Linguist. 9(1), 1–10 (1983)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions - I. Math. Program. 14(1), 265–294 (1978)
Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference. In: EMNLP, pp. 2249–2255. The Association for Computational Linguistics (2016)
Prakash, A., et al.: Neural paraphrase generation with stacked residual LSTM networks. In: COLING, pp. 2923–2934. ACL (2016)
Quirk, C., Brockett, C., Dolan, W.B.: Monolingual machine translation for paraphrase generation. In: EMNLP, pp. 142–149. ACL (2004)
See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-generator networks. In: ACL (1), pp. 1073–1083. Association for Computational Linguistics (2017)
Song, Y., Yan, R., Feng, Y., Zhang, Y., Zhao, D., Zhang, M.: Towards a neural conversation model with diversity net using determinantal point processes. In: AAAI, pp. 5932–5939. AAAI Press (2018)
Stobbe, P., Krause, A.: Efficient minimization of decomposable submodular functions. In: NIPS, pp. 2208–2216. Curran Associates, Inc. (2010)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS, pp. 3104–3112 (2014)
Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
Vijayakumar, A.K., et al.: Diverse beam search for improved description of complex scenes. In: AAAI, pp. 7371–7379. AAAI Press (2018)
Zhang, X., Lapata, M.: Sentence simplification with deep reinforcement learning. In: EMNLP, pp. 584–594. Association for Computational Linguistics (2017)
Acknowledgement
This research work has been funded by the National Natural Science Foundation of China (Grant No. 61772337, U1736207) and the National Key R&D Program of China (2018YFC0832004).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Fan, X., Liu, D., Wang, X., Liu, Y., Liu, G., Su, B. (2020). A Submodular Optimization-Based VAE-Transformer Framework for Paraphrase Generation. In: Zhu, X., Zhang, M., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2020. Lecture Notes in Computer Science(), vol 12430. Springer, Cham. https://doi.org/10.1007/978-3-030-60450-9_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-60450-9_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60449-3
Online ISBN: 978-3-030-60450-9
eBook Packages: Computer ScienceComputer Science (R0)