Skip to main content

AFPun-GAN: Ambiguity-Fluency Generative Adversarial Network for Pun Generation

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2020)

Abstract

Automatic pun generation is an interesting and challenging text generation task. In this study, we focus on the task of homographic pun generation by given a pair of word senses. Current efforts depend on templates or laboriously annotated pun source to guide the supervised learning, which is lack of quality and diversity of generated puns. To address this, we present a new text generation model, called Ambiguity-Fluency Pun Generative Adversarial Network (AFPun-GAN) for pun genration. This model is composed of a pun generator to produce pun sentences by a hierarchical on-lstm attention model, and a pun discriminator to distinguish the generated pun sentences and real sentences with word senses of target pun word. The proposed model assigns a hierarchical low reward to train the pun generator via reinforcement learning, encouraging the pun generator to produce the ambiguous and fluent pun sentences that can better support two word senses. The experimental results on pun generation task demonstrate that our proposed AFPun-GAN model is able to generate pun sentences that are more ambiguous and fluent in both automatic and human evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/alvations/pywsd.

References

  1. Ma, S., Sun, X., Wang, Y., et al.: Bag-of-Words as target for neural machine translation. arXiv: Computation and Language (2018a)

    Google Scholar 

  2. Xu, J., Sun, X., Zeng, Q., et al.: Unpaired sentiment-to-sentiment translation: a cycled reinforcement learning approach. In: ACL (2018)

    Google Scholar 

  3. Ma, S., Sun, X., Lin, J., et al.: Autoencoder as assistant supervisor: improving text representation for Chinese social media text summarization. In: Annual Meeting of the Association for Computational Linguistics, pp. 725–731 (2018b)

    Google Scholar 

  4. Liu, T., Wang, K., Sha, L., et al.: Table-to-text generation by structure-aware Seq2seq Learning. arXiv: Computation and Language (2017)

    Google Scholar 

  5. Diao, Y., et al.: Homographic puns recognition based on latent semantic structures. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 565–576. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73618-1_47

    Chapter  Google Scholar 

  6. Redfern, W.: Puns. Scriblerian Kit-Cats 19(2), 204 (1987)

    Google Scholar 

  7. Yu, Z., Tan, J., Wan, X.: A neural approach to pun generation. In: Meeting of the Association for Computational Linguistics (2018)

    Google Scholar 

  8. Valitutti, A., Strapparava, C., Stock, O., et al.: Textual affect sensing for computational advertising. In: National Conference on Artificial Intelligence, pp. 117–122 (2008)

    Google Scholar 

  9. Miller, T., Gurevych, I.: Automatic disambiguation of English puns. In: International Joint Conference on Natural Language Processing, pp. 719–729 (2015)

    Google Scholar 

  10. Luo, F., Li, S., Yang, P., et al.: Pun-GAN: generative adversarial network for pun generation. In: EMNLP (2019)

    Google Scholar 

  11. Goodfellow, I., Pougetabadie, J., Mirza, M., et al.: Generative adversarial nets. In: Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Lessard, G., Levison, M.: Computational modelling of linguistic humour: Tom Swifties. In: ALLC/ACH Joint Annual Conference, Oxford, pp. 175–178 (1992)

    Google Scholar 

  13. Binsted, K., Ritchie, G.: An implemented model of punning riddles. In: Proceedings of the 12th National Conference on Artificial Intelligence, pp. 633–638 (1994)

    Google Scholar 

  14. Venour, C.: The computational generation of a class of puns. Master’s thesis, Queen’s University, Kingston, Ontario (1999)

    Google Scholar 

  15. Hempelmann, C.F.: Paronomasic puns: target recoverability towards automatic generation. Ph.D thesis, Purdue University (2003)

    Google Scholar 

  16. Hong, B.A., Ong, E.: Automatically extracting word relationships as templates for pun generation. In: Automatically Extracting Word Relationships as Templates for Pun Generation. Association for Computational Linguistics (2009)

    Google Scholar 

  17. Ritchie, G.: Computational mechanisms for pun generation. In: Natural Language Generation, pp. 125–132 (2005)

    Google Scholar 

  18. He, H., Peng, N., Liang, P., et al.: Pun generation with surprise. In: North American Chapter of the Association for Computational Linguistics, pp. 1734–1744 (2019)

    Google Scholar 

  19. Ritchie, G.: The linguistic analysis of jokes. Sci. Total Environ. 2(2), 157–171 (2003)

    Google Scholar 

  20. Miller, T., Hempelmann, C.F., Gurevych, I., et al.: SemEval-2017 -task 7: detection and interpretation of English puns. In: Annual Meeting of the Association for Computational Linguistics, SemEval@ACL, pp. 58–68 (2017)

    Google Scholar 

  21. Kao, J.T., Levy, R., Goodman, N.D.: A computational model of linguistic humor in puns. Cogn. Sci. 40, 1270–1285 (2015)

    Article  Google Scholar 

  22. Diao, Y., Lin, Y., Di, W., et al.: WECA: a WordNet-encoded collocation-attention network for homographic pun recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2507–2516 (2018)

    Google Scholar 

  23. Diao, Y., Lin, H., Yang, L., et al.: Heterographic pun recognition via pronunciation and spelling understanding gated attention network. In: The World Wide Web Conference, pp. 363–371 (2019)

    Google Scholar 

  24. Xie, Z.: Neural text generation: a practical guide (2017)

    Google Scholar 

  25. Jozefowicz, R., Vinyals, O., Schuster, M., et al.: Exploring the limits of language modeling (2016)

    Google Scholar 

  26. Juefei-Xu, F., Dey, R., Boddeti, V.N., Savvides, M.: RankGAN: a maximum margin ranking GAN for generating faces. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 3–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_1

    Chapter  Google Scholar 

  27. Xu, J., Ren, X., Lin, J., et al.: Diversity-promoting GAN: a cross-entropy based generative adversarial network for diversified text generation. In: Conference on Empirical Methods in Natural Language Processing (2018)

    Google Scholar 

  28. Chi, Z., Dong, L., Wei, F., et al.: Cross-lingual natural language generation via pre-training. In: AAAI (2020)

    Google Scholar 

  29. Shen, Y., Tan, S., Sordoni, A., et al.: Ordered neurons: integrating tree structures into recurrent neural networks. In: ICLR (2019)

    Google Scholar 

  30. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. Computer Science (2014)

    Google Scholar 

  31. Luo, F., Liu, T., Xia, Q., et al.: Incorporating glosses into neural word sense disambiguation. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, pp. 2473–2482 (2018)

    Google Scholar 

  32. Yu, L., Zhang, W., Wang, J., et al.: SeqGAN: sequence generative adversarial nets with policy gradient. In: AAAI 2017, pp. 2852–2858 (2017)

    Google Scholar 

  33. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

    MathSciNet  MATH  Google Scholar 

  34. Duchi, J.C., Hazan, E., Singer, Y., et al.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Mikolov, T., Karafiat, M., Burget, L., et al.: Recurrent neural network based language model. In: International Conference of the International Speech Communication Association, pp. 1045–1048 (2010)

    Google Scholar 

  36. Lili, M., Rui, Y., Ge, L., et al.: Backbone language modeling for constrained natural language generation. CoRR, abs/1512.06612

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by grant from the Natural Science Foundation of China (No. 61632011, 61702080, 61602079), the Fundamental Research Funds for the Central Universities (DUT18ZD102,DUT19RC(4)016), the National Key Research Development Program of China (No. 2018YFC0832101), and China Postdoctoral Science Foundation (No. 2018M631788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfei Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diao, Y. et al. (2020). AFPun-GAN: Ambiguity-Fluency Generative Adversarial Network for Pun Generation. In: Zhu, X., Zhang, M., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2020. Lecture Notes in Computer Science(), vol 12430. Springer, Cham. https://doi.org/10.1007/978-3-030-60450-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60450-9_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60449-3

  • Online ISBN: 978-3-030-60450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics