Skip to main content

Cross-View Label Transfer in Knee MR Segmentation Using Iterative Context Learning

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning (DART 2020, DCL 2020)

Abstract

MR images of knee joint are usually collected in axial, coronal, and sagittal views with large slice spacing for clinical study. Current methods either segment images in different views separately or apply super-resolution fusion before 3D segmentation. Knee images segmentation transfer between different views is still an open problem. Moreover, the majority of manual labelling works focus on the sagittal-view, and practically it is hard to collect label maps for the coronal- and axial-views, which are also invaluable for observing knee injuries. In this paper, we propose a novel algorithm to transfer sagittal-view annotations to the other views. First, we build a supervised low-resolution segmentation (LR-Seg) module based on the down-sampled sagittal-view slices to obtain the label map on the target view. And then a context transfer module is proposed to refine the segmentations using target-view context. Then by iterative learning of these two modules, the context from one result can be used to guide the training of the other. Experimental results show that our algorithm can greatly alleviate the burden of manually labeling works from clinicians and gain comparable segmentation results on axial and coronal views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nacey, N.C., Geeslin, M.G., Miller, G.W., Pierce, J.L.: Magnetic resonance imaging of the knee: an overview and update of conventional and state of the art imaging. J. Magn. Reson. Imaging JMRI 45(5), 1257–1275 (2017)

    Article  Google Scholar 

  2. Naraghi, A.M., White, L.M.: Imaging of athletic injuries of knee ligaments and menisci: sports imaging series. Radiology 281(1), 23–40 (2016)

    Article  Google Scholar 

  3. Ambellan, F., Tack, A., Ehlke, M., Zachow, S.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med. Image Anal. 52, 109–118 (2019)

    Article  Google Scholar 

  4. Pedoia, V., Norman, B., Mehany, S.N., Bucknor, M.D.: 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J. Magn. Reson. Imaging 49, 400–410 (2019)

    Article  Google Scholar 

  5. Liu, Q., et al.: Multi-class gradient harmonized dice loss with application to knee MR image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 86–94. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_10

    Chapter  Google Scholar 

  6. Chen, C., Biffi, C., Tarroni, G., Petersen, S., Bai, W., Rueckert, D.: Learning shape priors for robust cardiac MR segmentation from multi-view images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 523–531. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_58

    Chapter  Google Scholar 

  7. Mortazi, A., Karim, R., Rhode, K., Burt, J., Bagci, U.: CardiacNET: segmentation of left atrium and proximal pulmonary veins from MRI using multi-view CNN. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 377–385. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_43

    Chapter  Google Scholar 

  8. Setio, A.A.A., et al.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5), 1160–1169 (2016)

    Article  Google Scholar 

  9. Sui, Y., Afacan, O., Gholipour, A., Warfield, S.K.: Isotropic MRI super-resolution reconstruction with multi-scale gradient field prior. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 3–11. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_1

    Chapter  Google Scholar 

  10. Chaudhari, A.S., et al.: Super-resolution musculoskeletal MRI using deep learning. Magn. Reson. Med. 80(5), 2139–2154 (2018)

    Article  Google Scholar 

  11. Xuan, K., et al.: Reconstruction of isotropic high-resolution MR image from multiple anisotropic scans using sparse fidelity loss and adversarial regularization. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 65–73. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_8

    Chapter  Google Scholar 

  12. Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1742–1750 (2015)

    Google Scholar 

  13. Rajchl, M., et al.: DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans. Medical Imaging 36, 674–683 (2017)

    Article  Google Scholar 

  14. Wang, G., et al.: Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Trans. Med. Imaging 37, 1562–1573 (2018)

    Article  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Milletari, F., Navab, N., Ahmadi, S.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFC0116402, Department of Science and Technology of Zhejiang Province Key Research and Development Program under Grant 2017C03029, Shanghai Pujiang Program (19PJ1406800), and Interdisciplinary Program of Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lichi Zhang or Dahong Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, T., Xuan, K., Xue, Z., Chen, L., Zhang, L., Qian, D. (2020). Cross-View Label Transfer in Knee MR Segmentation Using Iterative Context Learning. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning. DART DCL 2020 2020. Lecture Notes in Computer Science(), vol 12444. Springer, Cham. https://doi.org/10.1007/978-3-030-60548-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60548-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60547-6

  • Online ISBN: 978-3-030-60548-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics