Skip to main content

A Robust Automatic Method for Removing Projective Distortion of Photovoltaic Modules from Close Shot Images

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12305))

Included in the following conference series:

Abstract

Partial shading and hot spots may cause power loss and sometimes irreversible damage of photovoltaic (PV) modules. In order to evaluate the power generation of PV modules, it is necessary to calculate the area of shading and hot spots. The perspective distortion makes region closer to the camera have more pixels, which results in misestimate of shading area and hot spots. To solve this problem, a robust automatic method for removing projective distortion of photovoltaic modules from close shot images is proposed in this paper. Firstly, Images are converted to gray scale, and their edges are detected by Canny algorithm. Then, lines are detected by Hough transform, vanishing points are found by intersecting lines, and the line at infinity is specified by vanishing points. Next, the projective transformation matrix is decomposed into an affine transformation matrix and a simple projective transformation matrix, which has only two degrees of freedom. Affine rectification is derived from computing this simple projective transformation matrix, and finally, right angles are recovered by computing shear transformation matrix. The close shot visible and infrared images are collected for experiments. The results show that the proposed method performs better on rectification of PV modules from close shot images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bingol, O., Ozkaya, B.: Analysis and comparison of different PV array configurations under partial shading conditions. Solar Energy 160, 336–343 (2018)

    Article  Google Scholar 

  2. Zhu, L., Li, Q., Chen, M., Cao, K., Sun, Y.: A simplified mathematical model for power output predicting of building integrated photovoltaic under partial shading conditions. Energy Convers. Manage. 180, 831–843 (2019)

    Article  Google Scholar 

  3. Niazi, K.A.K., Akhtar, W., Khan, H.A., Yang, Y., Athar, S.: Hotspot diagnosis for solar photovoltaic modules using a naive bayes classifier. Sol. Energy 190, 34–43 (2019)

    Article  Google Scholar 

  4. Dunderdale, C., Brettenny, W., Clohessy, C., Dyk, E.E.: Photovoltaic defect classification through thermal infrared imaging using a machine learning approach. Prog. Photovoltaics Res. Appl. 28(3), 177–188 (2019)

    Article  Google Scholar 

  5. Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach (2002)

    Google Scholar 

  6. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2011). https://doi.org/10.1007/978-1-84882-935-0

  7. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)

    MATH  Google Scholar 

  8. Li, H.: Statistical Learning Methods. Tsinghua University Press, Beijing (2012)

    Google Scholar 

  9. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  10. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2015)

    Google Scholar 

  11. Kaiming, H., Georgia, G., Piotr, D., Ross, G.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. (2018)

    Google Scholar 

  12. Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring r-cnn (2019)

    Google Scholar 

  13. Chen, L.-C., et al.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV (2018)

    Google Scholar 

  14. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for scene segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  15. Zhang, J., Fang, S., Ehinger, K.A., Wei, H., Yang, J.: Hypergraph optimization for salient region detection based on foreground and background queries. IEEE Access 6, 26729–26741 (2018)

    Article  Google Scholar 

  16. Zhang, J., Ehinger, K.A., Wei, H., Zhang, K., Yang, J.: A novel graph-based optimization framework for salient object detection. Pattern Recogn. 64(C), 39–50 (2016)

    Google Scholar 

  17. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision (2000)

    Google Scholar 

  18. Zhang, Z., Ganesh, A., Liang, X., Ma, Y.: TILT: transform invariant low-rank textures. Int. J. Comput. Vision 99(1), 1–24 (2012)

    Article  MathSciNet  Google Scholar 

  19. Shi, B., Wang, X., Lyu, P., Yao, C., Bai, X.: Robust scene text recognition with automatic rectification. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  20. Ahmad, S., Cheong, L.-F.: Robust detection and affine rectification of planar homogeneous texture for scene understanding. Int. J. Comput. Vision 126(8), 822–854 (2018). https://doi.org/10.1007/s11263-018-1078-2

    Article  Google Scholar 

  21. Ahmad, S., Cheong, L.-F.: Facilitating and exploring planar homogeneous texture for indoor scene understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 35–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_3

    Chapter  Google Scholar 

  22. Pritts, J., Chum, O., Matas, J.: Detection, rectification and segmentation of coplanar repeated patterns. In: Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  23. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: ASTER: an attentional scene text recognizer with flexible rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2035–2048 (2019)

    Article  Google Scholar 

  24. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(6), 679–698 (1986)

    Google Scholar 

  25. Lim, J.S.: Two-Dimensional Signal and Image Processing, pp. 478–488. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  26. Parker, J.R.: Algorithms for Image Processing and Computer Vision, pp. 23–29. Wiley, New York (1997)

    Google Scholar 

  27. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Comm. ACM 15, 11–15 (1972)

    Article  Google Scholar 

  28. Zhuang, X.: Digital affine shear transforms: fast realization and applications in image/video processing. SIAM J. Imaging Sci. 9(3), 1437–1466 (2016)

    Article  MathSciNet  Google Scholar 

  29. Xie, L., Tao, D., Wei, H.: Early expression detection via online multi-instance learning with nonlinear extension. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS) 30(5), 1486–1496 (2019)

    Article  MathSciNet  Google Scholar 

  30. Xie, L., Guo, W., Wei, H., Tang, Y., Tao, D.: Efficient unsupervised dimension reduction for streaming multi-view data. IEEE Trans. Cybern. https://doi.org/10.1109/tcyb.2020.2996684

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFB1500800), and by the National Natural Science Foundation of China (Grant No. 61773118, Grant No. 61703100, Grant No. 61973083, Grant No. 61802059), and by the Natural Science Foundation of Jiangsu (Grant No. BK20170692, Grant No. BK20180365), and by the Zhishan Young Scholar Program of Southeast University and the Fundamental Research Funds for the Central Universities (Grant No. 2242020R40119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxia Zhang or Haikun Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Y., Chen, X., Zhang, J., Xie, L., Zhang, K., Wei, H. (2020). A Robust Automatic Method for Removing Projective Distortion of Photovoltaic Modules from Close Shot Images. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12305. Springer, Cham. https://doi.org/10.1007/978-3-030-60633-6_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60633-6_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60632-9

  • Online ISBN: 978-3-030-60633-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics