Skip to main content

An Adversarial Learned Trajectory Predictor with Knowledge-Rich Latent Variables

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Abstract

Forecasting human trajectories is critical for different applications, such as autonomous driving and social robot. Recent works predict future trajectories by using a generative model, in which human motion is encoded with recurrent neural network. However, the latent variable needed in the generative model is always either a random Gaussian noise or encoded from a scene. In this work, we focus on generating the latent variable from the trajectory itself. Specifically, we propose a latent variable predictor, which can bridge the gap between latent variable distributions of observed and ground truth trajectories. We evaluate the proposed method on several benchmarking datasets. Results demonstrate that the proposed method outperforms state-of-the-art methods in average and final displacement errors. In addition, the ablation study indicates that the prediction performance will not dramatically decrease as sampling times decline during tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2255–2264. IEEE, Salt Lake City (2018). https://doi.org/10.1109/CVPR.2018.00240

  2. Zernetsch, S., Kohnen, S., Goldhammer, M., Doll, K., Sick, B.: Trajectory prediction of cyclists using a physical model and an artificial neural network. In: 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 833–838 IEEE (2016)

    Google Scholar 

  3. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  4. Yi, S., Li, H., Wang, X.: Understanding pedestrian behaviors from stationary crowd groups. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3488–3496. IEEE, Boston (2015). https://doi.org/10.1109/CVPR.2015.7298971

  5. Li, J., Zhan, W., Tomizuka, M.: Generic vehicle tracking framework capable of handling occlusions based on modified mixture particle filter. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 936–942 IEEE Suzhou (2018). https://doi.org/10.1109/IVS.2018.8500626

  6. Wang, W., Xi, J., Zhao, D.: Learning and inferring a driver’s braking action in car-following scenarios. IEEE Trans. Veh. Technol. 67(5), 3887–3899 (2018)

    Article  Google Scholar 

  7. Laugier, C., et al.: Probabilistic analysis of dynamic scenes and collision risks assessment to improve driving safety. IEEE Intell. Transp. Syst. Mag. 3(4), 4–19 (2011)

    Article  Google Scholar 

  8. Aoude, G., Joseph, J., Roy, N., How, J.: Mobile agent trajectory prediction using Bayesian nonparametric reachability trees. In: AIAA Infotech Aerospace Conference 2011, p. 1512 (2011)

    Google Scholar 

  9. Kasper, D., et al.: Object-oriented Bayesian networks for detection of lane change maneuvers. IEEE Intell. Transp. Syst. Mag. 4(3), 19–31 (2012)

    Article  MathSciNet  Google Scholar 

  10. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 336–345 (2017)

    Google Scholar 

  11. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  12. Amirian, J., Hayet, J.-B., Pettré, J.: Social ways: learning multi-modal distributions of pedestrian trajectories with GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  13. Sadeghian, A., Kosaraju, A., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: Sophie: an attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1349–1358 (2019)

    Google Scholar 

  14. Kosaraju, V., Sadeghian, A., Martín-Martín, R., Reid, I., Rezatofighi, H., Savarese, S.: Social-BiGAT: multimodal trajectory forecasting using bicycle-GAN and graph attention networks. In: Advances in Neural Information Processing Systems, pp. 137–146 (2019)

    Google Scholar 

  15. Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D.: TrafficPredict: trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6120–6127 (2019). https://doi.org/10.1609/aaai.v33i01.33016120

  16. Pellegrini, S., Ess, A., Van Gool, L.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 452–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_33

    Chapter  Google Scholar 

  17. Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3542–3549 (2014)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv:1412.6980

  19. Zhang, P., Ouyang, W., Zhang, P., Xue, J., Zheng, N.: SR-LSTM: state refinement for LSTM towards pedestrian trajectory prediction. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12085–12094. IEEE Long Beach (2019). https://doi.org/10.1109/CVPR.2019.01236

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, C., Yang, B., Chen, L., Yan, G. (2020). An Adversarial Learned Trajectory Predictor with Knowledge-Rich Latent Variables. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12307. Springer, Cham. https://doi.org/10.1007/978-3-030-60636-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60636-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60635-0

  • Online ISBN: 978-3-030-60636-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics