Skip to main content

Multi-model Network for Fine-Grained Cross-Media Retrieval

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12306))

Included in the following conference series:

Abstract

With the development of Internet, the forms of web data are rapidly increasing. However, existing cross-media retrieval methods mainly focus on coarse-grained, which is far from being satisfied in practical application. In addition, the heterogeneity gap among different types of media tends to result in inconsistent data representation, so the measuring similarity is quite challenging. In this work, we propose a novel multi-modal network for fine-grained cross-media retrieval. Specifically, our model consists of two networks, including proprietary networks and the common network. The proprietary network is designed as a single feature extraction network for each media to extract unique features for obtaining precise media feature representation. The common network is designed to extract common features of four different types of media. Comprehensive experiments demonstrate the effectiveness of our proposed approach. The source code and models of this work have been made public available at: https://github.com/fgcmr/fgcmr.

This work was supported by the National Natural Science Foundation of China (No. 61976116, 61773117), Fundamental Research Funds for the Central Universities (No. 30920021135), and the Primary Research & Development Plan of Jiangsu Province - Industry Prospects and Common Key Technologies (No. BE2017157).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao, Y., et al.: Towards automatic construction of diverse, high-quality image dataset. IEEE Trans. Knowl. Data Eng. 32(6), 1199–1211 (2020)

    Article  Google Scholar 

  2. Lu, J., et al.: HSI Road: a hyper spectral image dataset for road segmentation. In: IEEE International Conference on Multimedia and Expo, pp. 1–6 (2020)

    Google Scholar 

  3. Hua, X., et al.: A new web-supervised method for image dataset constructions. Neurocomputing 236, 23–31 (2017)

    Article  Google Scholar 

  4. Yao, Y., et al.: Exploiting web images for dataset construction: a domain robust approach. IEEE Trans. Multimedia 19(8), 1771–1784 (2017)

    Article  Google Scholar 

  5. Zhang, J., et al.: Extracting visual knowledge from the internet: making sense of image data. In: International Conference on Multimedia Modeling, pp. 862–873 (2016)

    Google Scholar 

  6. Shen, F., et al.: Automatic image dataset construction with multiple textual metadata. In: IEEE International Conference on Multimedia and Expo, pp. 1–6 (2016)

    Google Scholar 

  7. Yao, Y., et al.: A domain robust approach for image dataset construction. In: ACM International conference on Multimedia, pp. 212–216 (2016)

    Google Scholar 

  8. Yao, Y., et al.: Exploiting web images for multi-output classification: from category to subcategories. IEEE Trans. Neural Netw. Learn. Syst. 31(7), 2348–2360 (2020)

    Google Scholar 

  9. Shu, X., et al.: Personalized age progression with bi-level aging dictionary learning. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 905–917 (2018)

    Article  Google Scholar 

  10. Yao, Y., et al.: Bridging the web data and fine-grained visual recognition via alleviating label noise and domain mismatch. In: ACM International Conference on Multimedia (2020)

    Google Scholar 

  11. Sun, Z., et al.: CRSSC: salvage reusable samples from noisy data for robust learning. In: ACM International Conference on Multimedia (2020)

    Google Scholar 

  12. Zhang, C., et al.: Data-driven meta-set based fine-grained visual recognition. In: ACM International Conference on Multimedia (2020)

    Google Scholar 

  13. Liu, H., Yao, Y., Sun, Z., Li, X., Jia, K., Tang, Z.: Road segmentation with image-LiDAR data fusion in deep neural network. Multimed. Tools Appl. 1, 1–16 (2019). https://doi.org/10.1007/s11042-019-07870-0

    Article  Google Scholar 

  14. Liu, H., Han, X., Li, X., Yao, Y., Huang, P., Tang, Z.: Deep representation learning for road detection using Siamese network. Multimed. Tools. Appl. 78(17), 24269–24283 (2018). https://doi.org/10.1007/s11042-018-6986-1

    Article  Google Scholar 

  15. Xu, M., et al.: Deep learning for person reidentification using support vector machines. Adv. Multimed. (2017)

    Google Scholar 

  16. Chen, T., et al.: Classification constrained discriminator for domain adaptive semantic segmentation. In: IEEE International Conference on Multimedia and Expo, pp. 1–6 (2020)

    Google Scholar 

  17. Ding, L., et al.: Approximate kernel selection via matrix approximation. In: IEEE Transactions on Neural Networks and Learning Systems (2020)

    Google Scholar 

  18. Shu, X., et al.: Hierarchical long short-term concurrent memory for human interaction recognition. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2019)

    Google Scholar 

  19. G.-S. Xie, et al., SRSC: Selective, robust, and supervised constrained feature representation for image classification. IEEE Trans. Neural Netwk. Learn. Syst. (2019)

    Google Scholar 

  20. Sun, Z., et al.: Dynamically visual disambiguation of keyword-based image search. In: International Joint Conference on Artificial Intelligence, pp. 996–1002 (2019)

    Google Scholar 

  21. Yang, W., et al.: Discovering and distinguishing multiple visual senses for polysemous words. In: AAAI Conference on Artificial Intelligence, pp. 523–530 (2018)

    Google Scholar 

  22. Hu, B., et al.: PyRetri: A PyTorch-based Library for Unsupervised Image Retrieval by Deep Convolutional Neural Networks. arXiv preprint arXiv:2005.02154 (2020)

  23. Gu, Y., et al.: Clustering-driven unsupervised deep hashing for image retrieval. Neurocomputing 368, 114–123 (2019)

    Article  Google Scholar 

  24. Wang, W., et al.: Set and rebase: determining the semantic graph connectivity for unsupervised cross modal hashing. In: International Joint Conference on Artificial Intelligence, pp. 853–859 (2020)

    Google Scholar 

  25. Huang, P., et al.: Collaborative representation based local discriminant projection for feature extraction. Digit. Signal Process. 76, 84–93 (2018)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J., et al.: Extracting privileged information from untagged corpora for classifier learning. In: International Joint Conference on Artificial Intelligence, pp. 1085–1091 (2018)

    Google Scholar 

  27. Yao, Y., et al.: Extracting multiple visual senses for web learning. IEEE Trans. Multimed. 21(1), 184–196 (2019)

    Article  Google Scholar 

  28. Yao, Y., et al.: Extracting privileged information for enhancing classifier learning. IEEE Trans. Image Process. 28(1), 436–450 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, W., et al.: Exploiting textual and visual features for image categorization. Pattern Recogn. Lett. 117, 140–145 (2019)

    Article  Google Scholar 

  30. Branson, S., et al.: Bird species categorization using pose normalized deep convolutional nets. arXiv preprint arXiv, 1406.2952 (2014)

    Google Scholar 

  31. Castrejon, L., et al.: Learning aligned cross-modal representations from weakly aligned data. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2940–2949 (2016)

    Google Scholar 

  32. Chen, W., et al.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2017)

    Google Scholar 

  33. Cui, Y., et al.: Large scale fine-grained categorization and domain-specific transfer learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4109–4118 (2018)

    Google Scholar 

  34. Fu, J., et al.: Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4438–4446 (2017)

    Google Scholar 

  35. Gavves, E., et al.: Local alignments for fine-grained categorization. Int. J. Comput. Vis. 111(2), 191–212 (2015)

    Article  Google Scholar 

  36. Gretton, A., et al.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Gu, J., et al.: Look, imagine and match: Improving textual-visual cross-modal retrieval with generative models. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7181–7189 (2018)

    Google Scholar 

  38. He, X., et al.: Fine-grained image classification via combining vision and language. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5994–6002 (2017)

    Google Scholar 

  39. He, X., et al.: A new benchmark and approach for fine-grained cross-media retrieval. In: ACM International Conference on Multimedia, pp. 1740–1748 (2019)

    Google Scholar 

  40. Huang, X., et al.: Mhtn: Modal-adversarial hybrid transfer network for cross-modal retrieval. IEEE Trans. Cybernet. (2018)

    Google Scholar 

  41. Kim, J., et al.: Learning semantics with deep belief network for cross-language information retrieval. In: Proceedings of COLING 2012: Posters, pp. 579–588 (2012)

    Google Scholar 

  42. Lee, K.H., et al.: Stacked cross attention for image-text matching. In: European Conference on Computer Vision, pp. 201–216 (2018)

    Google Scholar 

  43. Lin, T.Y., et al.: Bilinear cnn models for fine-grained visual recognition. In: IEEE International Conference on Computer Vision, pp. 1449–1457 (2015)

    Google Scholar 

  44. Mandal, D., et al.: Generalized semantic preserving hashing for n-label cross-modal retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4076–4084 (2017)

    Google Scholar 

  45. Peng, Y., et al.: Object-part attention model for fine-grained image classification. IEEE Trans. Image Process. 27(3), 1487–1500 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Peng, Y., et al.: Cross-media shared representation by hierarchical learning with multiple deep networks. In: IJCAI, pp. 3846–3853 (2016)

    Google Scholar 

  47. Rasiwasia, N., et al.: A new approach to cross-modal multimedia retrieval. In: ACM International Conference on Multimedia, pp. 251–260 (2010)

    Google Scholar 

  48. Simonyan, K., et al.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv, 1409.1556 (2015)

    Google Scholar 

  49. Wang, B., et al.: Adversarial cross-modal retrieval. In: ACM International Conference on Multimedia, pp. 154–162 (2017)

    Google Scholar 

  50. Zhang, C., et al.: Web-supervised network with softly update-drop training for fine-grained visual classification. In: AAAI Conference on Artificial Intelligence, pp. 12781–12788 (2020)

    Google Scholar 

  51. Xie, G., et al.: Attentive region embedding network for zero-shot learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9384–9393 (2019)

    Google Scholar 

  52. Wang, C., et al.: Deep semantic mapping for cross-modal retrieval. In: IEEE International Conference on Tools with Artificial Intelligence, pp. 234–241 (2015)

    Google Scholar 

  53. Wang, Y., et al.: Learning a discriminative filter bank within a cnn for fine-grained recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4148–4157 (2018)

    Google Scholar 

  54. Wei, Y., et al.: Cross-modal retrieval with cnn visual features: A new baseline. IEEE Trans. Cybernet. 47(2), 449–460 (2016)

    Google Scholar 

  55. Xiao, T., et al.: The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 842–850 (2015)

    Google Scholar 

  56. Xie, S., et al.: Hyper-class augmented and regularized deep learning for fine-grained image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2645–2654 (2015)

    Google Scholar 

  57. Yang, S., et al.: Unsupervised template learning for fine-grained object recognition. In: Advances in Neural Information Processing Systems, pp. 3122–3130, (2012)

    Google Scholar 

  58. Zhai, X., et al.: Learning cross-media joint representation with sparse and semisupervised regularization. IEEE Trans. Circuits Syst. Video Technol. 24(6), 965–978 (2014)

    Article  Google Scholar 

  59. Zhang, N., et al.: Part-based r-cnns for fine-grained category detection. In: European Conference on Computer Vision, pp. 834–849 (2014)

    Google Scholar 

  60. Zhang, Y., et al.: Weakly supervised fine-grained categorization with part-based image representation. IEEE Trans. Image Process. 25(4), 1713–1725 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zheng, H., et al.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: IEEE International Conference on Computer Vision, pp. 5209–5217 (2017)

    Google Scholar 

  62. Zhou, P., et al.: Attention-based bidirectional long short-term memory networks for relation classification. In: Annual Meeting of the Association for Computational Linguistics, pp. 207–212 (2016)

    Google Scholar 

  63. Zhang, C., et al.: Web-supervised network for fine-grained visual classification. In: IEEE International Conference on Multimedia and Expo, pp. 1–6 (2020)

    Google Scholar 

  64. Xie, G., et al.: Region graph embedding network for zero-shot learning. In: European Conference on Computer Vision (2020)

    Google Scholar 

  65. Zhou, T., et al.: Motion-attentive transition for zero-shot video object segmentation. In: AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  66. Luo, H., et al.: SegEQA: video segmentation based visual attention for embodied question answering. In: IEEE Conference on Computer Vision, pp. 9667–9676 (2019)

    Google Scholar 

  67. Wang, W., et al.: Target-aware adaptive tracking for unsupervised video object segmentation. The DAVIS Challenge on Video Object Segmentation on CVPR workshop (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, J., Yao, Y., Wang, Q., Zhou, Y., Yang, W., Shen, F. (2020). Multi-model Network for Fine-Grained Cross-Media Retrieval. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12306. Springer, Cham. https://doi.org/10.1007/978-3-030-60639-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60639-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60638-1

  • Online ISBN: 978-3-030-60639-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics