Skip to main content

Deep Face Recognition Based on Penalty Cosface

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12306))

Included in the following conference series:

  • 1617 Accesses

Abstract

Face recognition has achieved great progress because of the advancement of deep convolutional neural networks (CNNs) techniques. The Softmax loss is one of the most popular loss function for deep learning models. In many situations, face images are captured in the unconstrained environments with changing poses and illuminations, making face recognition very challenging because of the dramatic appearance variations. The models trained with the Softmax loss may fail to extract discriminative information for the face images with extreme illumination or pose conditions. Recently, Cosface has been proven effective for improving the generalization ability of the Softmax loss. Derived from Cosface, we propose a novel method named Penalty Cosface to address the unconstrained face recognition challenges and learn discriminative features. Specifically, we design a variant of Cosface that remove radial variations by penalizing \(\ell _2\)-normalized constraints of the features and weights. Therefore, the discriminative ability of the Penalty Cosface is guaranteed by the large margin of the Cosface, and the penalty term is beneficial to simplifying the gradient calculations. Experimental results show that the Penalty Cosface improves the discriminative power of deep networks and outperforms the other variants of Softmax loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: a dataset for recognising faces across pose and age. In: Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition, pp. 67–74 (2018)

    Google Scholar 

  2. Chen, S., Liu, Y., Gao, X., Han, Z.: MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices. In: Zhou, J., et al. (eds.) CCBR 2018. LNCS, vol. 10996, pp. 428–438. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97909-0_46

    Chapter  Google Scholar 

  3. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts, Amherst (2007)

    Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations. vol. abs/1412.6980 (2015)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  8. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  9. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: Proceedings of the International Conference on Machine Learning, pp. 507–516 (2016)

    Google Scholar 

  10. Masi, I., Wu, Y., Hassner, T., Natarajan, P.: Deep face recognition: a survey. In: Proceedings of the SIBGRAPI Conference on Graphics, Patterns and Images, pp. 471–478 (2018)

    Google Scholar 

  11. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: Agedb: the first manually collected, in-the-wild age database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 51–59 (2017)

    Google Scholar 

  12. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  13. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  14. Sengupta, S., Chen, J.C., Castillo, C., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 1–9 (2016)

    Google Scholar 

  15. Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)

    Article  Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2015)

    Google Scholar 

  17. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996 (2014)

    Google Scholar 

  18. Sun, Y., Liang, D., Wang, X., Tang, X.: Deepid3: face recognition with very deep neural networks. CoRR abs/1502.00873 (2015)

    Google Scholar 

  19. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  20. Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Signal Process. Lett. 25(7), 926–930 (2018)

    Article  Google Scholar 

  21. Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  22. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  23. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. CoRR abs/1411.7923 (2014)

    Google Scholar 

  24. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  25. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

This project was supported by the Key Areas Research and Development Program of Guangdong Province (2019B010155003) and NSFC (61876104, 61902444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhuang Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, S., Tang, J., Feng, Z., Lai, J. (2020). Deep Face Recognition Based on Penalty Cosface. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12306. Springer, Cham. https://doi.org/10.1007/978-3-030-60639-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60639-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60638-1

  • Online ISBN: 978-3-030-60639-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics