Skip to main content

Branch Information Correction Network for Human Pose Estimation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12306))

Included in the following conference series:

  • 1583 Accesses

Abstract

The main task of human keypoint detection is to detect the position of human bone joints in pictures or videos. In the branch-based network, key points are classified according to different properties, and each branch of the network is responsible for the prediction of a certain set of keypoints. Compared with the direct prediction of the network of all the key points, the advantage of this method is that it considers the structural constraints on the human body and the internal relationship between the key points. Based on the branch network, this paper studies the information-sharing relationship and the negative transfer relationship between branches. It proposes a new branch information correction network to make full use of the complementary information on branches. The experiment proves that the method proposed in this paper can further improve the accuracy of the keypoint prediction of the human body, and can correct some key points which are easily affected by the environment.

C. Wang—Student Paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  2. Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Trans. Comput. 100(1), 67–92 (1973)

    Article  Google Scholar 

  3. Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: People detection and articulated pose estimation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1014–1021. IEEE (2009)

    Google Scholar 

  4. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vision 61(1), 55–79 (2005)

    Article  Google Scholar 

  5. Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: CVPR 2011, pp. 1385–1392. IEEE (2011)

    Google Scholar 

  6. Ye, M., Yang, R.: Real-time simultaneous pose and shape estimation for articulated objects using a single depth camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2345–2352 (2014)

    Google Scholar 

  7. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)

    Google Scholar 

  8. Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with iterative error feedback. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4733–4742 (2016)

    Google Scholar 

  9. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in Neural Information Processing Systems, pp. 1799–1807 (2014)

    Google Scholar 

  10. Yang, W., Ouyang, W., Li, H., Wang, X.: End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3073–3082 (2016)

    Google Scholar 

  11. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4724–4732 (2016)

    Google Scholar 

  12. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  13. Chen, Y., Shen, C., Wei, X.S., Liu, L., Yang, J.: Adversarial PoseNet: a structure-aware convolutional network for human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1212–1221 (2017)

    Google Scholar 

  14. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 466–481 (2018)

    Google Scholar 

  15. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3

    Chapter  Google Scholar 

  16. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  17. Du, K., Lin, X., Sun, Y., Ma, X.: CrossInfoNet: multi-task information sharing based hand pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9896–9905 (2019)

    Google Scholar 

  18. Huang, S., Gong, M., Tao, D.: A coarse-fine network for keypoint localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3028–3037 (2017)

    Google Scholar 

  19. Tang, W., Wu, Y.: Does learning specific features for related parts help human pose estimation? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1116 (2019)

    Google Scholar 

  20. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of P. R. China (61828501) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ni, Q., Wang, C., Da, F. (2020). Branch Information Correction Network for Human Pose Estimation. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12306. Springer, Cham. https://doi.org/10.1007/978-3-030-60639-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60639-8_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60638-1

  • Online ISBN: 978-3-030-60639-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics