Skip to main content

Modeling a Low Vision Observer: Application in Comparison of Image Enhancement Methods

  • Conference paper
  • First Online:
HCI International 2020 – Late Breaking Posters (HCII 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1294))

Included in the following conference series:

  • 1478 Accesses

Abstract

Numerous image processing methods have been proposed to help low vision people, often relied on contrast enhancement algorithms. Their assessment is usually performed by tests on low vision subjects, which are expensive and time consuming. This paper presents a low vision observer model, fully customizable to fit various impaired visual performances, which may be used for early algorithm assessment, and avoiding unnecessary human tests. This model is fitted to visual performances of a subject with degenerative retinal disease, and applied to images processed by two edge enhancement algorithms, allowing to explain their performances in terms of blur reduction and color saturation improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moshtael, H., Aslam, T., Underwood, I., Dhillon, B.: High tech aids low vision: a review of image processing for the visually impaired. Transl. Vis. Sci. Technol. 4(4), 6 (2015)

    Article  Google Scholar 

  2. Cottaris, N.P., Jiang, H., Ding, X., Wandell, B.A., Brainard, D.H.: A computational-observer model of spatial contrast sensitivity: effects of wave-front-based optics, cone-mosaic structure, and inference engine. J. Vis. 19(4), 8 (2019)

    Article  Google Scholar 

  3. Peli, E.: Simulating normal and low vision. In: Peli, E. (ed.) Vision Models for Target Detection and Recognition. World Scientific (1995)

    Google Scholar 

  4. Thompson, W.B., Legge, G.E., Kersten, D.J., Shakespeare, R.A., Lei, Q.: Simulating visibility under reduced acuity and contrast sensitivity. JOSA A 34(4), 583–593 (2017)

    Article  Google Scholar 

  5. Al-Atabany, W.I., Memon, M.A., Downes, S.M., Degenaar, P.A.: Designing and testing scene enhancement algorithms for patients with retina degenerative disorders. Biomed. Eng. Online 9(1), 27 (2010)

    Article  Google Scholar 

  6. Joulan, K., Brémond, R., Hautière, N.: Towards an analytical age-dependent model of contrast sensitivity functions for an ageing society. Sci. World J. (2015)

    Google Scholar 

  7. Mantiuk, R.K., Ramponi, G.: Age-dependent prediction of visible differences in displayed images. J. Soc. Inf. Display 26(1), 4–13 (2018)

    Article  Google Scholar 

  8. Barten, P.G.: Contrast sensitivity of the human eye and its effects on image quality. SPIE press, Bellingham (1999)

    Book  Google Scholar 

  9. Le Callet, P., Barba, D.: Robust approach for color image quality assessment. In: Visual Communications and Image Processing 2003, vol. 5150, pp. 1573–1581. International Society for Optics and Photonics (2003)

    Google Scholar 

  10. Watson, A.: The cortex transform- rapid computation of simulated neural images. Comput. Vis. Graph. Image Process. 39(3), 311–327 (1987)

    Article  Google Scholar 

  11. Ninassi, A., Le Meur, O., Le Callet, P., Barba, D.: On the performance of human visual system based image quality assessment metric using wavelet domain. In: Proceedings of SPIE Human Vision and Electronic Imaging XIII, vol. 6806 (2008)

    Google Scholar 

  12. Hartong, D.T., Berson, E.L., Dryja, T.P.: Retinitis pigmentosa. Lancet 368(9549), 1795–1809 (2006)

    Article  Google Scholar 

  13. Bensinger, E., Rinella, N., Saud, A., Loumou, P., Ratnam, K., Griffin, S., Duncan, J.L.: Loss of foveal cone structure precedes loss of visual acuity in patients with rod-cone degeneration. Invest. Ophthalmol. Vis. Sci. 60(8), 3187–3196 (2019)

    Article  Google Scholar 

  14. Hyvârinen, L., Rovamo, J., La urinen, P., Peltomaa, A.: Contrast sensitivity function in evaluation of visual impairment due to retinitis pigmentosa. Acta Ophthalmologica 59(5), 763–773(1981)

    Google Scholar 

  15. Leat, S.J., Omoruyi, G., Kennedy, A., Jernigan, E.: Generic and customized digital image enhancement filters for the visually impaired. Vis. Res. 45(15), 1991–2007 (2005)

    Article  Google Scholar 

  16. Elsayed, M., Sammani, F., Hamdi, A., Albaser, A., Babalghoom, H.: A new method for full reference image blur measure. Int. J. Simul. Syst. Sci. Technol. 19, 4 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Walbrecq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Walbrecq, C., Lafon-Pham, D., Marc, I. (2020). Modeling a Low Vision Observer: Application in Comparison of Image Enhancement Methods. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2020 – Late Breaking Posters. HCII 2020. Communications in Computer and Information Science, vol 1294. Springer, Cham. https://doi.org/10.1007/978-3-030-60703-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60703-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60702-9

  • Online ISBN: 978-3-030-60703-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics