Skip to main content

Introducing Drugonfly; A Novel Computer-Aided Drug Repurposing Pipeline Based on Genomic, Structural and Physicochemical Profiles

  • Conference paper
  • First Online:
Brain Function Assessment in Learning (BFAL 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12462))

Included in the following conference series:

  • 592 Accesses

Abstract

Herein, we are proposing a novel and radical pipeline that will facilitate the repurposing of approved drugs in an unprecedented way that will eventually yield invaluable insights and results that will aid the pharma-medical domain to tackle many more pathologies using weaponry that has already been approved, is safe for the public, is very rapid relatively to conventional drug design and requires no further significant investment to be made. The ultimate goal is to develop a novel clinical concept and establish a computer-aided pipeline that will facilitate and rationalize the repurposing of approved drugs, orphan drugs and generics. The end result of the described pipeline is a competitive and reliable software that will be made available for the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalkas, G.A., Vlachakis, D., Tsagkrasoulis, D., Kastania, A., Kossida, S.: State-of-the-art technology in modern computer-aided drug design. Briefings Bioinf. 14, 745–752 (2013). https://doi.org/10.1093/bib/bbs063

    Article  Google Scholar 

  2. Tsagrasoulis, D., Vlachakis, D., Megalooikonomou, V., Kossida, S: Introducing Drugster: a comprehensive and fully integrated drug design, lead and structure optimization toolkit. Bioinformatics 29, 126–128 (2013e). https://doi.org/10.1093/bioinformatics/bts637

  3. Antoniou, N., et al.: A motif within the armadillo repeat of Parkinson’s-linked LRRK2 interacts with FADD to hijack the extrinsic death pathway. Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-21931-8

  4. Amidi, A., Amidi, S., Vlachakis, D., Megalooikonomou, V., Paragios, N., Zacharaki, E.I.: EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation. PeerJ (2018). https://doi.org/10.7717/peerj.4750

  5. Kontopoulos, D.G., Vlachakis, D., Tsiliki, G., Kossida, S.: Structuprint: a scalable and extensible tool for two-dimensional representation of protein surfaces. BMC Struct. Biol. 16 (2016b). https://doi.org/10.1186/s12900-016-0055-7

  6. Papageorgiou, L., Cuong, N.T., Vlachakis, D.: Antibodies as stratagems against cancer. Mol. BioSyst. 12(7), 2047–2055 (2016). https://doi.org/10.1039/c5mb00699f

    Article  Google Scholar 

  7. Papageorgiou, L., Vlachakis, D.: Antisoma application: a fully integrated V-like antibodies platform AIMS. Med. Sci. 4, 382–394 (2017). https://doi.org/10.3934/medsci.2017.4.382

    Article  Google Scholar 

  8. Tsiliki, G., Vlachakis, D., Kossida, S.: On integrating multi-experiment microarray data. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 372 (2014). https://doi.org/10.1098/rsta.2013.0136

  9. Vlachakis, D.: Theoretical study of the Usutu virus helicase 3D structure, by means of computer- aided homology modelling. Theor. Biol. Med. Model. 6, 9 (2009). https://doi.org/10.1186/1742-4682-6-9

  10. Vlachakis, D., Bencurova, E., Papangelopoulos, N., Kossida, S.: Current state-of-the-art molecular dynamics methods and applications. In: Advances in Protein Chemistry and Structural Biology, vol. 94, pp. 269–313. Academic Press (2014b). https://doi.org/10.1016/b978-0-12-800168-4.00007-x

  11. Vlachakis, D., Fakourelis, P., Megalooikonomou,V., Makris, C., Kossida, S.: DrugOn: a fully integrated pharmacophore modeling and structure optimization toolkit. PeerJ (2015). https://doi.org/10.7717/peerj.725

  12. Vlachakis, D., Koumandou, V.L., Kossida, S.: A holistic evolutionary and structural study of flaviviridae provides insights into the function and inhibition of HCV helicase. PeerJ (2013c). https://doi.org/10.7717/peerj.74

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Vlachakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vlachakis, D. (2020). Introducing Drugonfly; A Novel Computer-Aided Drug Repurposing Pipeline Based on Genomic, Structural and Physicochemical Profiles. In: Frasson, C., Bamidis, P., Vlamos, P. (eds) Brain Function Assessment in Learning. BFAL 2020. Lecture Notes in Computer Science(), vol 12462. Springer, Cham. https://doi.org/10.1007/978-3-030-60735-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60735-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60734-0

  • Online ISBN: 978-3-030-60735-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics