Skip to main content

A Fault Tolerant Control for Robotic Manipulators Using Adaptive Non-singular Fast Terminal Sliding Mode Control Based on Neural Third Order Sliding Mode Observer

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12465))

Included in the following conference series:

Abstract

This paper proposes a fault tolerant control technique for uncertain faulty robotic manipulators when only position measurement is available. First, a neural third-order sliding mode observer is utilized to approximate the system velocities, the lumped uncertainties and faults, in which the radial basis function neural network is employed to approximate the observer gains. Then, the obtained information is applied to design a non-singular fast terminal sliding mode control to deal with the effect of the lumped uncertainties and faults. In addition, an adaptive law is used to approximate the sliding gain in switching control law. The controller-observer method can provide superior features such as high tracking precision, less chattering phenomenon, finite-time convergence, and robustness against the lumped uncertainties and faults without the requirement of its prior knowledge. The stability and finite-time convergence of the proposed technique are proved in theory by using the Lyapunov function. To verify the usefulness of the proposed strategy, computer simulations for a 2-link serial robotic manipulator are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Heidelberg (2013)

    Google Scholar 

  2. Islam, S., Liu, X.P.: Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 58(6), 2444–2453 (2010)

    Article  Google Scholar 

  3. Vo, A.T., Kang, H.-J., Nguyen, V.-C.: An output feedback tracking control based on neural sliding mode and high order sliding mode observer. In: 2017 10th International Conference on Human System Interactions (HSI), pp. 161–165 (2017)

    Google Scholar 

  4. Zhihong, M., Paplinski, A.P., Wu, H.R.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Autom. Control 39(12), 2464–2469 (1994)

    Article  MathSciNet  Google Scholar 

  5. Wang, H., et al.: Design and implementation of adaptive terminal sliding-mode control on a steer-by-wire equipped road vehicle. IEEE Trans. Ind. Electron. 63(9), 5774–5785 (2016)

    Article  Google Scholar 

  6. Wu, Y., Yu, X., Man, Z.: Terminal sliding mode control design for uncertain dynamic systems. Syst. Control Lett. 34(5), 281–287 (1998)

    Article  MathSciNet  Google Scholar 

  7. Mobayen, S.: Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties. Complexity 21(2), 239–244 (2015)

    Article  MathSciNet  Google Scholar 

  8. Solis, C.U., Clempner, J.B., Poznyak, A.S.: Fast terminal sliding-mode control with an integral filter applied to a Van Der Pol oscillator. IEEE Trans. Ind. Electron. 64(7), 5622–5628 (2017)

    Article  Google Scholar 

  9. Madani, T., Daachi, B., Djouani, K.: Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems. IEEE Trans. Control Syst. Technol. 25(3), 1133–1140 (2016)

    Article  Google Scholar 

  10. Lin, C.-K.: Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks. IEEE Trans. Fuzzy Syst. 14(6), 849–859 (2006)

    Article  Google Scholar 

  11. Jin, M., Lee, J., Ahn, K.K.: Continuous nonsingular terminal sliding-mode control of shape memory alloy actuators using time delay estimation. IEEE/ASME Trans. Mechatron. 20(2), 899–909 (2014)

    Article  Google Scholar 

  12. Eshghi, S., Varatharajoo, R.: Nonsingular terminal sliding mode control technique for attitude tracking problem of a small satellite with combined energy and attitude control system (CEACS). Aerospace Sci. Technol. 76, 14–26 (2018)

    Article  Google Scholar 

  13. Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)

    Article  MathSciNet  Google Scholar 

  14. Van, M.: An enhanced robust fault tolerant control based on an adaptive fuzzy PID-nonsingular fast terminal sliding mode control for uncertain nonlinear systems. IEEE/ASME Trans. Mechatron. 23(3), 1362–1371 (2018)

    Article  Google Scholar 

  15. Anh Tuan, V., Kang, H.-J.: A new finite time control solution for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting scheme. J. Comput. Nonlinear Dyn. 14 (3), (2019)

    Google Scholar 

  16. Van, M., Mavrovouniotis, M., Ge, S.S.: An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans. Syst. Man Cybern.: Syst. 49(7), 1448–1458 (2018)

    Article  Google Scholar 

  17. Van, M., Kang, H.-J., Suh, Y.-S., Shin, K.-S.: Output feedback tracking control of uncertain robot manipulators via higher-order sliding-mode observer and fuzzy compensator. J. Mech. Sci. Technol. 27(8), 2487–2496 (2013). https://doi.org/10.1007/s12206-013-0636-3

    Article  Google Scholar 

  18. Chalanga, A., Kamal, S., Fridman, L.M., Bandyopadhyay, B., Moreno, J.A.: Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches. IEEE Trans. Ind. Electron. 63(6), 3677–3685 (2016)

    Article  Google Scholar 

  19. Hoang, D.-T., Kang, H.-J.: Fuzzy neural sliding mode control for robot manipulator. In: Huang, D.-S., Han, K., Hussain, A. (eds.) ICIC 2016. LNCS (LNAI), vol. 9773, pp. 541–550. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42297-8_50

    Chapter  Google Scholar 

  20. Nguyen, V.-C., Vo, A.-T., Kang, H.-J.: Continuous PID sliding mode control based on neural third order sliding mode observer for robotic manipulators. In: Huang, D.-S., Huang, Z.-K., Hussain, A. (eds.) ICIC 2019. LNCS (LNAI), vol. 11645, pp. 167–178. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26766-7_16

    Chapter  Google Scholar 

  21. Nguyen, V.-C., Vo, A.-T., Kang, H.-J.: A non-singular fast terminal sliding mode control based on third-order sliding mode observer for a class of second-order uncertain nonlinear systems and its application to robot manipulators. IEEE Access 8, 78109–78120 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education under Grant 2019R1D1A3A03103528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, VC., Kang, HJ. (2020). A Fault Tolerant Control for Robotic Manipulators Using Adaptive Non-singular Fast Terminal Sliding Mode Control Based on Neural Third Order Sliding Mode Observer. In: Huang, DS., Premaratne, P. (eds) Intelligent Computing Methodologies. ICIC 2020. Lecture Notes in Computer Science(), vol 12465. Springer, Cham. https://doi.org/10.1007/978-3-030-60796-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60796-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60795-1

  • Online ISBN: 978-3-030-60796-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics