Skip to main content

A New Robotic Manipulator Calibration Method of Identification Kinematic and Compliance Errors

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12465))

Included in the following conference series:

Abstract

In this work, a new robotic calibration method is proposed for reducing the positional errors of the robot manipulator. First, geometric errors of a robot are identified by using a conventional kinematic calibration model of the robot. Then, a radial basis function is constructed for compensating the compliance errors based on the effective torques for further increasing the positional precision of the robot. The enhanced positional accuracy of the robot manipulator in experimental studies that are carried on a YS100 robot illustrates the advantages of the suggested algorithm than the other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mooring, B.W., Roth, Z.S., Driels, M.R.: Fundamentals of Manipulator Calibration. Wiley, New York (1991)

    Google Scholar 

  2. Whitney, D.E., Lozinski, C.A., Rourke, J.M.: Industrial robot forward calibration method and results. J. Dyn. Syst. Meas. Control 108, 1–8 (1986)

    Article  Google Scholar 

  3. John, J.C., et al.: Introduction to Robotics: Mechanics and Control. Addison-Wesley, Read (1989)

    Google Scholar 

  4. Hayati, S., Mirmirani, M.: Improving the absolute positioning accuracy of robot manipulators. J. Robot. Syst. 2, 397–413 (1985)

    Article  Google Scholar 

  5. Hayati, S., Tso, K., Roston, G.: Robot geometry calibration. In: Proceedings of 1988 IEEE International Conference on Robotics and Automation, pp. 947–951 (1988)

    Google Scholar 

  6. Klug, C., Schmalstieg, D., Gloor, T., Arth, C.: A complete workflow for automatic forward kinematics model extraction of robotic total stations using the Denavit-Hartenberg convention. J. Intell. Robot. Syst. 95, 311–329 (2019)

    Article  Google Scholar 

  7. Faria, C., Vilaça, J.L., Monteiro, S., Erlhagen, W., Bicho, E.: Automatic Denavit-Hartenberg parameter identification for serial manipulators. In: IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, pp. 610–617 (2019)

    Google Scholar 

  8. Morar, C.A., Hăgan, M., Doroftei, I., Marinca, Ş.: Analog matrix multiplier dedicated to the Denavit-Hartenberg algorithm. In: 2019 International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1–4 (2019)

    Google Scholar 

  9. Zhuang, H., Roth, Z.S., Hamano, F.: A complete and parametrically continuous kinematic model for robot manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 92–97 (1990)

    Google Scholar 

  10. Zhuang, H., Wang, L.K., Roth, Z.S.: Error-model-based robot calibration using a modified CPC model. Robot. Comput. Integr. Manuf. 10, 287–299 (1993)

    Article  Google Scholar 

  11. Okamura, K., Park, F.C.: Kinematic calibration using the product of exponentials formula. Robotica 14, 415–421 (1996)

    Article  Google Scholar 

  12. Chen, G., Kong, L., Li, Q., Wang, H., Lin, Z.: Complete, minimal and continuous error models for the kinematic calibration of parallel manipulators based on POE formula. Mech. Mach. Theory 121, 844–856 (2018)

    Article  Google Scholar 

  13. Gupta, K.C.: Kinematic analysis of manipulators using the zero reference position description. Int. J. Rob. Res. 5, 5–13 (1986)

    Article  Google Scholar 

  14. Cheng, L.-P., Kazerounian, K.: Study and enumeration of singular configurations for the kinematic model of human arm. In: Proceedings of the IEEE 26th Annual Northeast Bioengineering Conference (Cat. No. 00CH37114), pp. 3–4 (2000)

    Google Scholar 

  15. Dumas, C., Caro, S., Garnier, S., Furet, B.: Joint stiffness identification of six-revolute industrial serial robots. Robot. Comput. Integr. Manuf. 27, 881–888 (2011)

    Article  Google Scholar 

  16. Slavković, N.R., Milutinović, D.S., Kokotović, B.M., Glavonjić, M.M., Živanović, S.T., Ehmann, K.F.: Cartesian compliance identification and analysis of an articulated machining robot. FME Trans. 41, 83–95 (2013)

    Google Scholar 

  17. Jang, J.H., Kim, S.H., Kwak, Y.K.: Calibration of geometric and non-geometric errors of an industrial robot. Robotica 19, 311–321 (2001)

    Article  Google Scholar 

  18. Meggiolaro, M.A., Dubowsky, S., Mavroidis, C.: Geometric and elastic error calibration of a high accuracy patient positioning system. Mech. Mach. Theory 40, 415–427 (2005)

    Article  Google Scholar 

  19. Zhou, J., Nguyen, H.-N., Kang, H.-J.: Simultaneous identification of joint compliance and kinematic parameters of industrial robots. Int. J. Precis. Eng. Manuf. 15, 2257–2264 (2014)

    Article  Google Scholar 

  20. Kamali, K., Joubair, A., Bonev, I.A., Bigras, P.: Elasto-geometrical calibration of an industrial robot under multidirectional external loads using a laser tracker. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4320–4327 (2016)

    Google Scholar 

  21. Müller, R., Scholer, M., Blum, A., Kanso, A.: Identification of the dynamic parameters of a robotic tool based on integrated torque sensors. In: 2019 23rd International Conference on Mechatronics Technology (ICMT), pp. 1–6 (2019)

    Google Scholar 

  22. Besset, P., Olabi, A., Gibaru, O.: Advanced calibration applied to a collaborative robot. In: 2016 IEEE International Power Electronics and Motion Control Conference (PEMC), pp. 662–667 (2016)

    Google Scholar 

  23. Xia, C., Liu, Y., Lei, B., Xiang, X.: Research on a generalized regression neural network model of thermocouple and it’s spread scope. In: 2008 Fourth International Conference on Natural Computation, pp. 109–113 (2008)

    Google Scholar 

  24. Corino, V.D.A., Matteucci, M., Cravello, L., Ferrari, E., Ferrari, A.A., Mainardi, L.T.: Long-term heart rate variability as a predictor of patient age. Comput. Methods Programs Biomed. 82, 248–257 (2006)

    Article  Google Scholar 

  25. Nakamura, Y., Ghodoussi, M.: Dynamics computation of closed-link robot mechanisms with nonredundant and redundant actuators. Int. Conf. Robot. Autom. 5, 294–302 (1989)

    Google Scholar 

Download references

Acknowledgment

This research was supported by 2020 Research Fund of University of Ulsan, Ulsan, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jung Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, PN., Kang, HJ. (2020). A New Robotic Manipulator Calibration Method of Identification Kinematic and Compliance Errors. In: Huang, DS., Premaratne, P. (eds) Intelligent Computing Methodologies. ICIC 2020. Lecture Notes in Computer Science(), vol 12465. Springer, Cham. https://doi.org/10.1007/978-3-030-60796-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60796-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60795-1

  • Online ISBN: 978-3-030-60796-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics