Skip to main content

A Highly Efficient Biomolecular Network Representation Model for Predicting Drug-Disease Associations

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12465))

Included in the following conference series:

Abstract

Identification of drug-disease association is crucial for drug development and reposition. However, discovering drugs which are associated with diseases from in vitro testing is costly and time-consuming. Accumulating evidence showed that computational approaches can complement biological and clinical experiments for this identification task. In this work, we propose a novel computational method Node2Bio for predicting drug-disease associations using a highly efficient biomolecular network representation model. Specifically, we first construct a large-scale biomolecular association network (BAN) by integrating the associations among drugs, diseases, proteins, miRNAs and lncRNAs. Then, the network embedding model node2vec is used to extract network behavior features of drug and disease nodes. Finally, the feature vectors are taken as inputs for the XGboost classifier to predict potential drug-disease associations. To evaluate the prediction performance of the proposed method, five-fold cross-validation tests are performed on a widely used SCMFDD-S dataset. The experimental results demonstrate that our method achieves competitive performance with a high AUC value of 0.8569, which suggests that our method is a useful tool for identification of drug-disease associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Z.-H., et al.: Identification of self-interacting proteins by integrating random projection classifier and finite impulse response filter. BMC Genom. 20(13), 1–10 (2019)

    Google Scholar 

  2. Zheng, K., Wang, L., You, Z.-H.: CGMDA: an approach to predict and validate MicroRNA-disease associations by utilizing chaos game representation and LightGBM. IEEE Access 7, 133314–133323 (2019)

    Article  Google Scholar 

  3. Wang, L., et al.: Identification of potential drug–targets by combining evolutionary information extracted from frequency profiles and molecular topological structures. Chem. Biol. Drug Des. (2019)

    Google Scholar 

  4. Jiang, H.-J., You, Z.-H., Zheng, K., Chen, Z.-H.: Predicting of drug-disease associations via sparse auto-encoder-based rotation forest. In: Huang, D.-S., Huang, Z.-K., Hussain, A. (eds.) ICIC 2019. LNCS (LNAI), vol. 11645, pp. 369–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26766-7_34

    Chapter  Google Scholar 

  5. Zheng, K., et al.: DBMDA: a unified embedding for sequence-based miRNA similarity measure with applications to predict and validate miRNA-disease associations. Mol. Ther.-Nucleic Acids 19, 602–611 (2020)

    Article  Google Scholar 

  6. Guo, Z.-H., You, Z.-H., Yi, H.-C.: Integrative construction and analysis of molecular association network in human cells by fusing node attribute and behavior information. Mol. Ther.-Nucleic Acids 19, 498–506 (2020)

    Article  Google Scholar 

  7. Wang, M.-N., et al.: LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization. Neurocomputing (2020)

    Google Scholar 

  8. Wang, M.-N., et al.: GNMFLMI: graph regularized nonnegative matrix factorization for predicting LncRNA-MiRNA interactions. IEEE Access 8, 37578–37588 (2020)

    Article  Google Scholar 

  9. Wong, L., et al.: LNRLMI: linear neighbour representation for predicting lncRNA-miRNA interactions. J. Cell Mol. Med. 24(1), 79–87 (2020)

    Article  Google Scholar 

  10. Hu, P., et al.: Learning multimodal networks from heterogeneous data for prediction of lncRNA-miRNA interactions. IEEE/ACM Trans. Computat. Biol. Bioinform. (2019)

    Google Scholar 

  11. Huang, Y.-A., et al.: ILNCSIM: improved lncRNA functional similarity calculation model. Oncotarget 7(18), 25902 (2016)

    Article  Google Scholar 

  12. You, Z.-H., et al.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47(3), 731–743 (2016)

    Article  Google Scholar 

  13. Huang, Y.-A., Chan, K.C., You, Z.-H.: Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling. Bioinformatics 34(5), 812–819 (2018)

    Article  Google Scholar 

  14. Zheng, K., et al.: iCDA-CGR: Identification of circRNA-disease associations based on Chaos Game Representation. PLoS Comput. Biol. 16(5), e1007872 (2020)

    Article  Google Scholar 

  15. Guo, Z.-H., Yi, H.-C., You, Z.-H.: Construction and comprehensive analysis of a molecular association network via lncRNA–miRNA–disease–drug–protein graph. Cells 8(8), 866 (2019)

    Article  Google Scholar 

  16. Guo, Z.-H., et al.: A learning-based method for lncRNA-disease association identification combing similarity information and rotation forest. iScience 19, 786–795 (2019)

    Google Scholar 

  17. Jiang, H.-J., You, Z.-H., Huang, Y.-A.: Predicting drug – disease associations via sigmoid kernel-based convolutional neural networks. J. Transl. Med. 17(1), 1–11 (2019)

    Article  Google Scholar 

  18. Jiang, H.-J., Huang, Y.-A., You, Z.-H.: SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  19. Huang, Y.-A., et al.: Graph convolution for predicting associations between miRNA and drug resistance. Bioinformatics 36(3), 851–858 (2020)

    Google Scholar 

  20. Wang, Y., et al.: A high efficient biological language model for predicting protein–protein interactions. Cells 8(2), 122 (2019)

    Article  Google Scholar 

  21. Wang, Y., et al.: Predicting protein interactions using a deep learning method-stacked sparse autoencoder combined with a probabilistic classification vector machine. Complexity 2018 (2018)

    Google Scholar 

  22. Wang, L., et al.: Combining high speed ELM learning with a deep convolutional neural network feature encoding for predicting protein-RNA interactions. IEEE/ACM Trans. Comput. Biol. Bioinform. (2018)

    Google Scholar 

  23. Huang, Y.-A., You, Z.-H., Chen, X.: A systematic prediction of drug-target interactions using molecular fingerprints and protein sequences. Curr. Protein Pept. Sci. 19(5), 468–478 (2018)

    Article  Google Scholar 

  24. Huang, Y.-A., et al.: Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC Bioinform. 17(1), 184 (2016)

    Article  Google Scholar 

  25. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46 (2018)

    Google Scholar 

  26. Zhang, W., et al.: Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinform. 19(1), 233 (2018)

    Article  Google Scholar 

  27. Szklarczyk, D., et al.: The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45 (2017)

    Google Scholar 

  28. Pinero, J., et al.: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45 (2017)

    Google Scholar 

  29. Jiang, Q., et al.: LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res. 43(Database issue), D193 (2015)

    Google Scholar 

  30. Geng, C., et al.: LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 41(Database issue), D983–D986 (2013)

    Google Scholar 

  31. Miao, Y.R., et al.: lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res. 46(Database issue), D276–D280 (2018)

    Google Scholar 

  32. Chou, C.H., et al.: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46(Database issue) (2017)

    Google Scholar 

  33. Yang, L., et al.: HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 42(Database issue), D1070 (2014)

    Google Scholar 

  34. Wang, D., et al.: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13), 1644–1650 (2010)

    Article  Google Scholar 

  35. Jiang, H.-J., Huang, Y.-A., You, Z.-H.: Predicting drug-disease associations via using gaussian interaction profile and kernel-based autoencoder. Biomed. Res. Int. 2019, 11 (2019)

    Google Scholar 

  36. Shen, J., et al.: Predicting protein-protein interactions based only on sequences information. Proc. Natl. Acad. Sci. U.S.A. 104(11), 4337–4341 (2007)

    Article  Google Scholar 

  37. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2016)

    Google Scholar 

  38. Guo, Z.-H., et al.: MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm. Briefings Bioinform. (2020)

    Google Scholar 

  39. Huang, Y.-A., et al.: Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model. J. Transl. Med. 15(1), 1–11 (2017)

    Article  Google Scholar 

  40. Guo, Z.-H., et al.: A learning based framework for diverse biomolecule relationship prediction in molecular association network. Commun. Biol. 3(1), 1–9 (2020)

    Article  Google Scholar 

Download references

Funding

This work is supported by the Xinjiang Natural Science Foundation under Grant 2017D01A78.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, HJ., You, ZH., Hu, L., Guo, ZH., Ji, BY., Wong, L. (2020). A Highly Efficient Biomolecular Network Representation Model for Predicting Drug-Disease Associations. In: Huang, DS., Premaratne, P. (eds) Intelligent Computing Methodologies. ICIC 2020. Lecture Notes in Computer Science(), vol 12465. Springer, Cham. https://doi.org/10.1007/978-3-030-60796-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60796-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60795-1

  • Online ISBN: 978-3-030-60796-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics