Skip to main content

Unsupervised Multi-omic Data Fusion: The Neural Graph Learning Network

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Abstract

In recent years, due to the high availability of omic data, data driven biology has greatly expanded. However, the analysis of different data sources is still an open challenge. A few multi-omic approaches have been proposed in literature. However, none of them take into consideration the intrinsic topology of each omic. In this work, an unsupervised learning method based on a deep neural network is proposed. For each omic, a separate network is trained, whose outputs are fused into a single graph; for this purpose, an innovative loss function has been designed to better represent the data cluster manifolds. A graph adjacency matrix is exploited to determine similarities among samples. With this approach, omics having a different number of features are merged into a unique representation. Quantitative and qualitative analyses show that the proposed method has results comparable to the state of the art. The method has a great intrinsic flexibility as it can be customized according to the complexity of the tasks and it has a lot of room for future improvements compared to more fine-tuned methods, opening the way for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  2. Altman, N., Krzywinski, M.: The curse (s) of dimensionality. Nat. Methods 15(6), 399–400 (2018)

    Article  Google Scholar 

  3. Anders, S., Huber, W.: Differential expression of RNA-Seq data at the gene level – the DESeq package. European Molecular Biology Laboratory (EMBL), Heidelberg, Germany, 10, f1000research (2012)

    Google Scholar 

  4. Anders, S., Pyl, P.T., Huber, W.: HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2), 166–169 (2015)

    Article  Google Scholar 

  5. Barbiero, P., Bertotti, A., Ciravegna, G., Cirrincione, G., Cirrincione, M., Piccolo, E.: Neural biclustering in gene expression analysis. In: International Conference on Computational Science and Computational Intelligence (2017)

    Google Scholar 

  6. Barbiero, P., Ciravegna, G., Randazzo, V., Cirrincione, G.: Topological gradient-based competitive learning (2020)

    Google Scholar 

  7. Barbiero, P., Squillero, G., Tonda, A.: Modeling generalization in machine learning: a methodological and computational study (2020)

    Google Scholar 

  8. Chaudhary, K., Poirion, O.B., Lu, L., Garmire, L.X.: Deep learning–based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res. 24(6), 1248–1259 (2018)

    Article  Google Scholar 

  9. Chu, A., et al.: Large-scale profiling of microRNAs for the cancer genome atlas. Nucleic Acids Res. 44(1), e3 (2016)

    Article  Google Scholar 

  10. Cirrincione, G., Ciravegna, G., Barbiero, P., Randazzo, V., Pasero, E.: The GH-EXIN neural network for hierarchical clustering. Neural Networks 121, 57–73 (2020)

    Article  Google Scholar 

  11. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  12. Gao, S., et al.: Unsupervised clustering reveals new prostate cancer subtypes. Transl. Cancer Res. 6(3), 561–572 (2017)

    Article  Google Scholar 

  13. Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  14. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and function using NetworkX. Technical report, Los Alamos National Lab. (LANL), LosAlamos, NM (United States) (2008)

    Google Scholar 

  15. Hubbard, T., et al.: The ensembl genome database project. Nucleic Acids Res. 30(1), 38–41 (2002)

    Article  MathSciNet  Google Scholar 

  16. Huber, W., Von Heydebreck, A., Sültmann, H., Poustka, A., Vingron, M.: Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(suppl1), S96–S104 (2002)

    Article  Google Scholar 

  17. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  Google Scholar 

  18. Jensen, M.A., Ferretti, V., Grossman, R.L., Staudt, L.M.: The NCI genomic data commons as an engine for precision medicine. Blood J. Am. Soc. Hematol. 130(4), 453–459 (2017)

    Google Scholar 

  19. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989). https://doi.org/10.1016/0020-0190(89)90102-6. http://www.sciencedirect.com/science/article/pii/0020019089901026

  20. Legrain, P., et al.: The human proteome project: current state and future direction. Mol. Cell. Proteomics 10(7) (2011)

    Google Scholar 

  21. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15(12), 550 (2014). https://doi.org/10.1186/s13059-014-0550-8

    Article  Google Scholar 

  22. National Cancer Institute: GDC data portal. https://portal.gdc.cancer.gov/. Accessed 14 June 2020

  23. National Human Genome Research Institute: The cost of sequencing a human genome. https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost. Accessed 14 June 2020

  24. Rappoport, N., Shamir, R.: Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res. 46(20), 10546–10562 (2018)

    Article  Google Scholar 

  25. Tomczak, K., Czerwinska, P., Wiznerowicz, M.: The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19(1A), A68 (2015)

    Google Scholar 

  26. Wang, B., et al.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11(3), 333 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Barbiero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbiero, P. et al. (2020). Unsupervised Multi-omic Data Fusion: The Neural Graph Learning Network. In: Huang, DS., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12463. Springer, Cham. https://doi.org/10.1007/978-3-030-60799-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60799-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60798-2

  • Online ISBN: 978-3-030-60799-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics