Skip to main content

An Efficient Method for Computation of Entropy and Joint Entropy of Images

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12463))

Included in the following conference series:

Abstract

This paper proposes an efficient method to compute entropy and joint entropy of images. Entropy of images is used to determine its quality. It is defined as the randomness or uncertainty present in the image. Similarly, joint entropy is a measure of the uncertainty present in the overlapped region of two images. Entropy and joint entropy computations are vital in several image processing applications. Intensity based image registration is done by maximizing the mutual information between two images. Mutual information is nothing but the difference between sum of individual entropies and joint entropy of two images. Image registration has applications, especially in the medical field, e.g. diagnosis and treatment of diseases. The entropy and joint entropy computation methods proposed in this paper are computationally less expensive than the standard methods. Entropy computation takes 78.60% less time than the standard method while computational time of joint entropy is reduced by 83.59%. This increase in efficiency comes at the cost of an error of 1.52% in entropy and 4.54% in joint entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amit, Y., Kong, A.: Graphical templates for model registration. IEEE Trans. Pattern Anal. Mach. Intell. 18(3), 225–236 (1996). https://doi.org/10.1109/34.485529

    Article  Google Scholar 

  2. Arun, K., Huang, T., Blostein, S.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 9(5), 698–700 (1987). https://doi.org/10.1109/tpami.1987.4767965

  3. Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  4. Borgefors, G.: Distance transformations in digital images. Comput. Vis., Graph. Image Process. 34(3), 344–371 (1986). https://doi.org/10.1016/s0734-189x(86)80047-0

    Article  Google Scholar 

  5. Chua, C., Jarvis, R.: 3D free-form surface registration and object recognition. Int. J. Comput. Vision 17(1), 77–99 (1996). https://doi.org/10.1007/bf00127819

    Article  Google Scholar 

  6. Collingnon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., Marchal, G.: Automated multi-modality image registration based on information theory. Inf. Process. Med. Imaging 3, 263–274 (1995)

    Google Scholar 

  7. Elsen, P., Pol, E., Sumanaweera, T., Hemler, P., Napel, S., Adler, J.: Grey value correlation techniques used for automatic matching of CT and MR volume images of the head (1994)

    Google Scholar 

  8. Hajnal, J., Saeed, N., Oatridge, A., Williams, E., Young, I., Bydder, G.: Detection of subtle brain changes using subvoxel registration and subtraction of serial MR images. J. Comput. Assist. Tomogr. 19(5), 677–691 (1995). https://doi.org/10.1097/00004728-199509000-00001

    Article  Google Scholar 

  9. Hill, D., Hawkes, D.: Medical image registration using knowledge of adjacency of anatomical structures. Image Vis. Comput. 12(3), 173–178 (1994). https://doi.org/10.1016/0262-8856(94)90069-8

    Article  Google Scholar 

  10. Hill, D.L.G., Hawkes, D.J., Harrison, N.A., Ruff, C.F.: A strategy for automated multimodality image registration incorporating anatomical knowledge and image characteristics. In: Information Processing in Medical Imaging, pp. 182–196 (1993)

    Google Scholar 

  11. Jiang, H., Robb, R., Tainter, K.: New approach to 3-D registration of multi-modality medical images by surface matching. Vis. Biomed. Comput. 1808 (1992)

    Google Scholar 

  12. Lemieux, L., Kitchen, N., Hughes, S., Thomas, D.: Voxel-based localization in frame-based and frameless stereotaxy and its accuracy. Med. Phys. 21(8), 1301–1310 (1994). https://doi.org/10.1118/1.597403

    Article  Google Scholar 

  13. Meyer, C., Leichtman, G., Brunberg, J., Wahl, R., Quint, L.: Simultaneous usage of homologous points, lines, and planes for optimal, 3-D, linear registration of multimodality imaging data. IEEE Trans. Med. Imaging 14(1), 1–11 (1995). https://doi.org/10.1109/42.370397

    Article  Google Scholar 

  14. Pelizzari, C., Chen, G., Spelbring, D., Weichselbaum, R., Chen, C.: Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J. Comput. Assist. Tomogr. 13(1), 20–26 (1989). https://doi.org/10.1097/00004728-198901000-00004

    Article  Google Scholar 

  15. Studholme, C., Derek, L., David, J.: Multiresolution voxel similarity measures for MR-PET registration. Inf. Process. Med. Imaging 3, 287–298 (1995)

    Google Scholar 

  16. Studholme, C., Hill, D., Hawkes, D.: Automated 3-D registration of MR and CT images of the head. Med. Image Anal. 1(2), 163–175 (1996). https://doi.org/10.1016/s1361-8415(96)80011-9

    Article  Google Scholar 

  17. Studholme, C., Hill, D., Hawkes, D.: Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med. Phys. 24(1), 25–35 (1997). https://doi.org/10.1118/1.598130

    Article  Google Scholar 

  18. Studholme, C., Hill, D., Hawkes, D.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recogn. 32(1), 71–86 (1999). https://doi.org/10.1016/s0031-3203(98)00091-0

    Article  Google Scholar 

  19. Thirion, J.: New feature points based on geometric invariants for 3D image registration. Int. J. Comput. Vision 18(2), 121–137 (1996). https://doi.org/10.1007/bf00054999

    Article  Google Scholar 

  20. Wells, W., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996). https://doi.org/10.1016/s1361-8415(01)80004-9

    Article  Google Scholar 

  21. Woods, R., Cherry, S., Mazziotta, J.: Rapid automated algorithm for aligning and reslicing PET images. J. Comput. Assist. Tomogr. 16(4), 620–633 (1992). https://doi.org/10.1097/00004728-199207000-00024

    Article  Google Scholar 

  22. Woods, R., Mazziotta, J., Cherry, A.R.: MRI-PET registration with automated algorithm. J. Comput. Assist. Tomogr. 17(4), 536–546 (1993). https://doi.org/10.1097/00004728-199307000-00004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debapriya Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sengupta, D., Gupta, P., Biswas, A. (2020). An Efficient Method for Computation of Entropy and Joint Entropy of Images. In: Huang, DS., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12463. Springer, Cham. https://doi.org/10.1007/978-3-030-60799-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60799-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60798-2

  • Online ISBN: 978-3-030-60799-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics