Skip to main content

Plant Leaf Recognition Network Based on Feature Learning and Metric Learning

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12463))

Included in the following conference series:

  • 698 Accesses

Abstract

Plant image recognition is an important thing for protecting plants, protecting the environment, and protecting nature. Recently, most models in the field of plant leaf recognition make classification after extracting global features. In this paper, we propose a plant leaf recognition model based on metric learning. Metric learning calculates the similarity of the extracted feature vectors to obtain the distance between different sample features, so as to determine whether similar pictures belong to the same category, and then achieve the classification effect. In this study, feature triplet are used for metric learning, and the loss function we used is triplet-loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varior, R.R., Shuai, B., Lu, J., Xu, D., Wang, G.: A siamese long short-term memory architecture for human re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 135–153. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_9

    Chapter  Google Scholar 

  2. Bai, X., Yang, M., Huang, T., Dou, Z., Yu, R., Xu, Y.: Deep-person: learning discriminative deep features for person re-identification. arXiv: Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  3. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: Computer Vision and Pattern Recognition, pp. 3376–3385 (2017)

    Google Scholar 

  4. Wu, D., Zheng, S., Yuan, C., Huang, D.: A deep model with combined losses for person re-identification. Cogn. Syst. Res. 54, 74–82 (2018)

    Article  Google Scholar 

  5. Wang, X.F., Huang, D.S., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recogn. 43(3), 603–618 (2010)

    Article  MATH  Google Scholar 

  6. Huang, G., Liu, Z., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, no. 2 (2017)

    Google Scholar 

  7. Li, B., Huang, D.S.: Locally linear discriminant embedding: an efficient method for face recognition. Pattern Recogn. 41(12), 3813–3821 (2008)

    Article  MATH  Google Scholar 

  8. Huang, D.S.: Systematic Theory of Neural Networks for Pattern Recognition. Publishing House of Electronic Industry of China, Beijing (1996)

    Google Scholar 

  9. Huang, D.S., Du, J.-X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19(12), 2099–2115 (2008)

    Article  Google Scholar 

  10. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural network. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Won, Y., Gader, P.D., Coffield, P.C.: Morphological shared-weight networks with applications to automatic target recognition. IEEE Trans. Neural Netw. 8(5), 1195–1203 (1997)

    Article  Google Scholar 

  12. Serre, T., Riesenhuber, M., Louie, J., Poggio, T.: On the role of object-specific features for real world object recognition in biological vision. In: Bülthoff, H.H., Wallraven, C., Lee, S.-W., Poggio, T.A. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 387–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36181-2_39

    Chapter  MATH  Google Scholar 

  13. Huang, D.S.: Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recogn. Artif. Intell. 13(7), 1083–1101 (1999)

    Article  Google Scholar 

  14. Wang, X.-F., Huang, D.S.: A novel density-based clustering framework by using level set method. IEEE Trans. Knowl. Data Eng. 21(11), 1515–1531 (2009)

    Article  Google Scholar 

  15. Shang, L., Huang, D.S., Du, J.-X., Zheng, C.-H.: Palmprint recognition using Fast ICA algorithm and radial basis probabilistic neural network. Neurocomputing 69(13–15), 1782–1786 (2006)

    Article  Google Scholar 

  16. Zhao, Z.-Q., Huang, D.S., Sun, B.-Y.: Human face recognition based on multiple features using neural networks committee. Pattern Recogn. Lett. 25(12), 1351–1358 (2004)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  19. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  20. Huang, D.S., Zhao, W.-B.: Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms. Appl. Math. Comput. 162(1), 461–473 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Huang, D.S.: Application of generalized radial basis function networks to recognition of radar targets. Int. J. Pattern Recognit. Artif. Intell. 13(6), 945–962 (1999)

    Article  Google Scholar 

  22. Huang, D.S., Ma, S.D.: Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding. J. Intell. Syst. 9(1), 1–38 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant of National Key R&D Program of China (No. 2018AAA0100100) and partly supported by National Natural Science Foundation of China (Grant nos. 61861146002, 61520106006, 61732012, 61772370, 61702371, 61932008, 61532008, 61672382, 61772357, and 61672203) and China Postdoctoral Science Foundation (Grant no. 2017M611619) and supported by “BAGUI Scholar” Program and the Scientific & Technological Base and Talent Special Program, GuiKe AD18126015 of the Guangxi Zhuang Autonomous Region of China and supported by Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01), LCNBI and ZJLab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, H. et al. (2020). Plant Leaf Recognition Network Based on Feature Learning and Metric Learning. In: Huang, DS., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12463. Springer, Cham. https://doi.org/10.1007/978-3-030-60799-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60799-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60798-2

  • Online ISBN: 978-3-030-60799-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics