Skip to main content

A Novel Plastic Neural Model with Dendritic Computation for Classification Problems

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12463))

Included in the following conference series:

  • 699 Accesses

Abstract

This paper proposes a novel plastic neural model (PNM) at the single neuron level and a specified learning algorithm to train it. The dendritic structure of PNM presents its diversity to fulfill each particular task. During the training process, PNM divides the Euclidean space of the training instances into several appropriate hypercubes, which have the same dimensional number. And then, each hypercube is transformed into a corresponding dendritic branch in PNM. A suitable dendritic structure of PNM has been proved to have powerful computational capabilities to solve the classification problems. Both theoretical analysis and empirical study of the proposed model are demonstrated in this paper. Five benchmark problems are employed to verify the effectiveness of PNM in our experiment. The results have verified that PNM can provide competitive classification performance compared with several widely-used classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adankon, M.M., Cheriet, M.: Support vector machine. Encycl. Biometrics, 1303–1308 (2009)

    Google Scholar 

  2. Anderson, J., Binzegger, T., Kahana, O., Martin, K., Segev, I.: Dendritic asymmetry cannot account for directional responses of neurons in visual cortex. Nat. Neurosci. 2(9), 820–824 (1999)

    Article  Google Scholar 

  3. Archie, K.A., Mel, B.W.: A model for intradendritic computation of binocular disparity. Nat. Neurosci. 3(1), 54–63 (2000)

    Article  Google Scholar 

  4. Cazé, R.D., Humphries, M., Gutkin, B.: Passive dendrites enable single neurons to compute linearly non-separable functions. PLoS Comput. Biol. 9(2), 867 (2013)

    Article  MathSciNet  Google Scholar 

  5. Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 2(2), 302–309 (1991)

    Article  Google Scholar 

  6. Costa, R.P., Sjöström, P.J.: One cell to rule them all, and in the dendrites bind them. Front. Synaptic Neurosci. 3 (2011)

    Google Scholar 

  7. Csáji, B.C.: Approximation with artificial neural networks. Faculty of Sciences, Etvs Lornd University, Hungary 24, 48 (2001)

    Google Scholar 

  8. Dayhoff, J.E.: Neural network architectures: an introduction. Van Nostrand Reinhold Co. (1990)

    Google Scholar 

  9. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  10. Euler, T., Detwiler, P.B., Denk, W.: Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418(6900), 845–852 (2002)

    Article  Google Scholar 

  11. Fahlman, S.E.: An empirical study of learning speed in back-propagation networks (1988)

    Google Scholar 

  12. Ferster, D., Jagadeesh, B.: Epsp-ipsp interactions in cat visual cortex studied with in vivo whole-cell patch recording. J. Neurosci. 12(4), 1262–1274 (1992)

    Article  Google Scholar 

  13. Fine, T.L.: Feedforward Neural Network Methodology. Springer, New York (2006). https://doi.org/10.1007/b97705

    Book  MATH  Google Scholar 

  14. García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the cec2005 special session on real parameter optimization. J. Heuristics 15(6), 617–644 (2009)

    Article  Google Scholar 

  15. Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron) a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998)

    Article  Google Scholar 

  16. Gurney, K.N.: Information processing in dendrites: I. input pattern generalization. Neural Netw. 14(8), 991–1004 (2001)

    Google Scholar 

  17. Gurney, K.N.: Information processing in dendrites: II. information theoretic complexity. Neural Netw. 14(8), 1005–1022 (2001)

    Google Scholar 

  18. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  19. Ji, J., Gao, S., Cheng, J., Tang, Z., Todo, Y.: An approximate logic neuron model with a dendritic structure. Neurocomputing 173, 1775–1783 (2016)

    Article  Google Scholar 

  20. Larose, D.T.: k-nearest neighbor algorithm. In: Discovering Knowledge in Data: An Introduction to Data Mining, pp. 90–106 (2005)

    Google Scholar 

  21. Lee, Y., Oh, S.H., Kim, M.W.: An analysis of premature saturation in back propagation learning. Neural Netw. 6(5), 719–728 (1993)

    Article  Google Scholar 

  22. Legenstein, R., Maass, W.: Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. J. Neurosci. 31(30), 10787–10802 (2011)

    Article  Google Scholar 

  23. Magee, J.C.: Dendritic integration of excitatory synaptic input. Nat. Rev. Neurosci. 1(3), 181–190 (2000)

    Article  Google Scholar 

  24. Magee, J.C.: Dendritic voltage-gated ion channels. Dendrites, 225–251 (2008)

    Google Scholar 

  25. Magoulast, G., Vrahatis, M., Androulakis, G.: On the alleviation of the problem of local minima in back-propagation. Nonlinear Anal. Theor. Methods Appl. 30(7), 4545–4550 (1997)

    Article  MathSciNet  Google Scholar 

  26. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  27. Mehrotra, K., Mohan, C.K., Ranka, S.: Elements of Artificial Neural Networks. MIT Press, Cambridge (1997)

    MATH  Google Scholar 

  28. Minsky, M., Papert, S.: Perceptrons (1969)

    Google Scholar 

  29. Mirjalili, S., Lewis, A.: S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)

    Article  Google Scholar 

  30. Newman, A.A.D.: UCI repository of machine learning database (school of information and computer science), University of California, Irvine (2007)

    Google Scholar 

  31. Oesch, N., Euler, T., Taylor, W.R.: Direction-selective dendritic action potentials in rabbit retina. Neuron 47(5), 739–750 (2005)

    Article  Google Scholar 

  32. Poirazi, P., Mel, B.W.: Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29(3), 779–796 (2001)

    Article  Google Scholar 

  33. Rosenblatt, F.: The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory (1957)

    Google Scholar 

  34. Salinas, E., Abbott, L.: A model of multiplicative neural responses in parietal cortex. Proc. Natl. Acad. Sci. 93(21), 11956–11961 (1996)

    Article  Google Scholar 

  35. Schachter, M.J., Oesch, N., Smith, R.G., Taylor, W.R.: Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell. PLoS Comput. Biol. 6(8), e1000, 899 (2010)

    Google Scholar 

  36. Simon, H.: Neural Networks, A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  37. Sjöström, P.J., Rancz, E.A., Roth, A., Häusser, M.: Dendritic excitability and synaptic plasticity. Physiol. Rev. 88(2), 769–840 (2008)

    Article  Google Scholar 

  38. Todo, Y., Tamura, H., Yamashita, K., Tang, Z.: Unsupervised learnable neuron model with nonlinear interaction on dendrites. Neural Networks 60, 96–103 (2014)

    Article  Google Scholar 

  39. Varma, S., Simon, R.: Bias in error estimation when using cross-validation for model selection. BMC Bioinf. 7(1), 91 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junkai Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, J., Dong, M., Tang, C., Zhao, J., Song, S. (2020). A Novel Plastic Neural Model with Dendritic Computation for Classification Problems. In: Huang, DS., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12463. Springer, Cham. https://doi.org/10.1007/978-3-030-60799-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60799-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60798-2

  • Online ISBN: 978-3-030-60799-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics